| [1] |
PERILLA J R, GOH B C, CASSIDY C K, et al. Molecular dynamics simulations of large macromolecular complexes[J]. Current Opinion in Structural Biology, 2015, 31: 64-74.
|
| [2] |
VENABLE R M, KRäMER A, PASTOR R W. Molecular Dynamics Simulations of Membrane Permeability[J]. Chemical Reviews, 2019, 119(9): 5954-5997.
|
| [3] |
LIGUORI N, CROCE R, MARRINK S J, et al. Molecular dynamics simulations in photosynthesis[J]. Photosynthesis Research, 2020, 144(2): 273-295.
|
| [4] |
BARCA G M J, BERTONI C, CARRINGTON L, et al. Recent developments in the general atomic and molecular electronic structure system[J]. Journal of Chemical Physics, 2020, 152(15): 154102.
|
| [5] |
HE X B, MAN V H, YANG W, et al. A fast and high-quality charge model for the next generation general AMBER force field[J]. Journal of Chemical Physics, 2020, 153(11): 114502.
|
| [6] |
TIAN C, KASAVAJHALA K, BELFON K A A, et al. ff19SB: Amino-Acid-Specific Protein Backbone Parameters Trained against Quantum Mechanics Energy Surfaces in Solution[J]. Journal of Chemical Theory and Computation, 2020, 16(1): 528-552.
|
| [7] |
MAO R, WANG X, GAO J. Bridging Carotenoid-to-Bacteriochlorophyll Energy Transfer of Purple Bacteria LH2 With Temperature Variations: Insights From Conformational Changes[J]. Frontiers in Chemistry, 2021, 9: 764107.
|
| [8] |
MARRINK S J, MONTICELLI L, MELO M N, et al. Two decades of Martini: Better beads, broader scope[J]. Wiley Interdisciplinary Reviews-Computational Molecular Science, 2023, 13(1): e1620.
|
| [9] |
王英杰, 刘梅怡, 高加力. 生物大分子全量子力学方法:显性极化(X-Pol)模型[J]. 分子科学学报, 2013, 29(6): 505-514.
|
| [10] |
LI W, MA H, LI S, et al. Computational and data driven molecular material design assisted by low scaling quantum mechanics calculations and machine learning[J]. Chemical Science, 2021, 12(45): 14987-15006.
|
| [11] |
ORTIZ DE LUZURIAGA I, ELLEUCHI S, JARRAYA K, et al. Semi-empirical and linear-scaling DFT methods to characterize duplex DNA and G-quadruplexes in the presence of interacting small molecules[J]. Physical Chemistry Chemical Physics, 2022, 24(19): 11510-11519.
|
| [12] |
LIU M, WANG Y, CHEN Y, et al. QM/MM through the 1990s: The First Twenty Years of Method Development and Applications[J]. Israel Journal of Chemistry, 2014, 54(8-9): 1250-1263.
|
| [13] |
BRUNK E, ROTHLISBERGER U. Mixed Quantum Mechanical/Molecular Mechanical Molecular Dyna-mics Simulations of Biological Systems in Ground and Electronically Excited States[J]. Chemical Reviews, 2015, 115(12): 6217-6263.
|
| [14] |
CHUNG L W, SAMEERA W M C, RAMOZZI R, et al. The ONIOM Method and Its Applications[J]. Che-mical Reviews, 2015, 115(12): 5678-5796.
|
| [15] |
MORZAN U N, ALONSO DE ARMIñO D J, FOGLIA N O, et al. Spectroscopy in Complex Environments from QM-MM Simulations[J]. Chemical Reviews, 2018, 118(7): 4071-4113.
|
| [16] |
JONES L O, MOSQUERA M A, SCHATZ G C, et al. Embedding Methods for Quantum Chemistry: Applications from Materials to Life Sciences[J]. Journal of the American Chemical Society, 2020, 142(7): 3281-3295.
|
| [17] |
MYSOVSKY A S, BOGDANOV A I. Seamless Multilayer─A Novel Total Energy Partition Scheme for Embedded and Hybrid Calculations[J]. Journal of Chemical Theory and Computation, 2023, 19(23): 8839-8854.
|
| [18] |
KITAURA K, IKEO E, ASADA T, et al. Fragment molecular orbital method: an approximate computational method for large molecules[J]. Chemical Physics Letters, 1999, 313(3): 701-706.
|
| [19] |
NAKANO T, KAMINUMA T, SATO T, et al. Fragment molecular orbital method: use of approximate electrostatic potential[J]. Chemical Physics Letters, 2002, 351(5): 475-480.
|
| [20] |
CHEN X H, ZHANG D W, ZHANG J Z H. Fractionation of peptide with disulfide bond for quantum mechanical calculation of interaction energy with molecules[J]. The Journal of Chemical Physics, 2004, 120(2): 839-844.
|
| [21] |
LI W, LI S, JIANG Y. Generalized Energy-Based Fragmentation Approach for Computing the Ground-State Energies and Properties of Large Molecules[J]. The Journal of Physical Chemistry A, 2007, 111(11): 2193-2199.
|
| [22] |
GORDON M S, FEDOROV D G, PRUITT S R, et al. Fragmentation Methods: A Route to Accurate Calculations on Large Systems[J]. Chemical Reviews, 2012, 112(1): 632-672.
|
| [23] |
RAMABHADRAN R O, RAGHAVACHARI K. The Successful Merger of Theoretical Thermochemistry with Fragment-Based Methods in Quantum Chemistry[J]. Accounts of Chemical Research, 2014, 47(12): 3596-3604.
|
| [24] |
LIU J, ZHU T, WANG X, et al. Quantum Fragment Based ab Initio Molecular Dynamics for Proteins[J]. Journal of Chemical Theory and Computation, 2015, 11(12): 5897-5905.
|
| [25] |
AKINAGA Y, KATO K, NAKANO T, et al. Fragmentation at sp2 carbon atoms in fragment molecular orbital method[J]. Journal of Computational Chemistry, 2020, 41(15): 1416-1420.
|
| [26] |
FEDOROV D G. Three-Body Energy Decomposition Analysis Based on the Fragment Molecular Orbital Method[J]. The Journal of Physical Chemistry A, 2020, 124(24): 4956-4971.
|
| [27] |
LI W, DONG H, MA J, et al. Structures and Spectroscopic Properties of Large Molecules and Condensed-Phase Systems Predicted by Generalized Energy-Based Fragmentation Approach[J]. Accounts of Chemical Research, 2021, 54(1): 169-181.
|
| [28] |
XIE W, GAO J. Design of a Next Generation Force Field: The X-POL Potential[J]. Journal of Chemical Theory and Computation, 2007, 3(6): 1890-1900.
|
| [29] |
GAO J, TRUHLAR D G, WANG Y, et al. Explicit polarization: a quantum mechanical framework for developing next generation force fields[J]. Accounts of Chemical Research, 2014, 47(9): 2837-2845.
|
| [30] |
GAO J L. A molecular-orbital derived polarization potential for liquid water[J]. Journal of Chemical Physics, 1998, 109(6): 2346-2354.
|
| [31] |
GAO J L. Toward a molecular orbital derived empirical potential for liquid simulations[J]. Journal of Phy-sical Chemistry B, 1997, 101(4): 657-663.
|
| [32] |
XIE W, GAO J. The Design of a Next Generation Force Field: The X-POL Potential[J]. Journal of chemical theory and computation, 2007, 3(6): 1890-1900.
|
| [33] |
XIE W, OROZCO M, TRUHLAR D G, et al. X-Pol Potential: An Electronic Structure-Based Force Field for Molecular Dynamics Simulation of a Solvated Protein in Water[J]. Journal of chemical theory and computation, 2009, 5(3): 459-467.
|
| [34] |
FU H, LIAO J, YANG J, et al. The Sunway TaihuLight supercomputer: system and applications[J]. Science China Information Sciences, 2016, 59(7): 072001.
|
| [35] |
CALVIN J A, PENG C, RISHI V, et al. Many-Body Quantum Chemistry on Massively Parallel Computers[J]. Chemical Reviews, 2021, 121(3): 1203-1231.
|
| [36] |
LIU Y, LIU X, LI F, et al. Closing the “Quantum Supremacy” Gap: Achieving Real-Time Simulation of a Random Quantum Circuit Using a New Sunway Supercomputer[C]. SC21:International Conference for High Performance Computing, Networking, Storage and Analysis. St. Louis, MO, USA: IEEE, 2021: 1-12.
|
| [37] |
ZHU Q, LUO H, YANG C, et al. Enabling and Scaling the HPCG Benchmark on the Newest Generation Sunway Supercomputer with 42 Million Heterogeneous Cores[C]. SC21:International Conference for High Performance Computing, Networking, Storage and Analysis. St. Louis, MO, USA: IEEE, 2021: 1-13.
|
| [38] |
SHANG H, SHEN L, FAN Y, et al. Large-scale simulation of quantum computational chemistry on a new sunway supercomputer[C]. SC'22:Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis. Dallas, Texas: IEEE, 2022: 1-14.
|
| [39] |
YANG C, XUE W, FU H, et al. 10M-Core Scalable Fully-Implicit Solver for Nonhydrostatic Atmospheric Dynamics[C]. SC'16:Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis. Salt Lake City, UT, USA: IEEE, 2016: 57-68.
|
| [40] |
FU H, HE C, CHEN B, et al. 18.9-Pflops Nonlinear Earthquake Simulation on Sunway TaihuLight: Enabling Depiction of 18-Hz and 8-Meter Scenarios[C]. SC17:International Conference for High Performan-ce Computing, Networking, Storage and Analysis. Denver, CO, USA: IEEE, 2017: 1-12.
|
| [41] |
HUANG S, CHEN J, ZHANG Z, et al. Establishing a Modeling System in 3-km Horizontal Resolution for Global Atmospheric Circulation Triggered by Submarine Volcanic Eruptions with 400 Billion Smoothed Particle Hydrodynamics[C]. SC23:International Conference for High Performance Computing, Networking, Storage and Analysis. Denver, CO, USA: IEEE, 2023: 1-12.
|
| [42] |
LIU J, MA H, SHANG H, et al. Quantum-centric high performance computing for quantum chemistry[J]. Physical Chemistry Chemical Physics, 2024, 26(22): 15831-15843.
|
| [43] |
SHANG H H, WANG F, FAN Y, et al. Large-scale quantum emulating simulations of biomolecules: A pilot exploration of parallel quantum computing[J]. Science Bulletin, 2024, 69(7): 876-880.
|
| [44] |
PULAY P. Convergence acceleration of iterative sequences. the case of scf iteration[J]. Chemical Physics Letters, 1980, 73(2): 393-398.
|