[1] |
周瑶, 李毅. WRC-19 结论分析及启示[J]. 邮电设计技术, 2020, 4:21-26.
|
[2] |
SILES J V, COOPER K B, LEE C, et al. A new generation of room-temperature frequency-multiplied sources with up to 10× higher output power in the 160-GHz-1.6-THz range[J]. IEEE Transactions on Terahertz Science and Technology, 2018, 8(6):596-604.
doi: 10.1109/TTHZ.2018.2876620
|
[3] |
MORO-MELGAR D, COJOCARI O, OPREA I. High power high efficiency 270-320 GHz source based on discrete Schottky diodes[C]// 2018 15th European Radar Conference (EuRAD). IEEE, 2018: 337-340.
|
[4] |
LIANG S, SONG X, ZHANG L, et al. A 177-183 GHz high-power GaN-based frequency doubler with over 200 mW output power[J]. IEEE Electron Device Letters, 2020, 41(5):669-672.
doi: 10.1109/LED.55
|
[5] |
PORTERFIELD D W. High-efficiency terahertz frequ-ency triplers[C]// 2007 IEEE/MTT-S International Microwave Symposium. IEEE, 2007: 337-340.
|
[6] |
GUO C, SHANG X, LANCASTER M J, et al. A 290-310 GHz single sideband mixer with integrated waveguide filters[J]. IEEE Transactions on Terahertz Science and Technology, 2018, 8(4):446-454.
doi: 10.1109/TTHZ.5503871
|
[7] |
TREUTTEL J, SCHLECHT E, SILES J, et al. A 2 THz Sch-ottky solid-state heterodyne receiver for atmospheric studies[J]. spiedigitallibrary.org.
|
[8] |
YANG Y, ZHANG B, ZHAO X, et al. 220 GHz wideband integrated receiver front end based on planar Schottky diodes[J]. Microwave and Optical Technology Letters, 2020, 62(8):2737-2746.
doi: 10.1002/mop.v62.8
|
[9] |
DEAL W, MEI X B, LEONG K M K H, et al. THz mon-olithic integrated circuits using InP high electron mobility transistors[J]. IEEE Transactions on Terahertz Science and Technology, 2011, 1(1):25-32.
doi: 10.1109/TTHZ.2011.2159539
|
[10] |
MEI X, YOSHIDA W, LANGE M, et al. First demon-stration of amplification at 1 THz using 25-nm InP high electron mobility transistor process[J]. IEEE Electron Device Letters, 2015, 36(4):327-329.
doi: 10.1109/LED.2015.2407193
|
[11] |
SHIVAN T, HOSSAIN M, STOPPEL D, et al. 220-325 GHz high‐isolation SPDT switch in InP DHBT techn-ology[J]. Electronics letters, 2018, 54(21):1222-1224.
doi: 10.1049/ell2.v54.21
|
[12] |
DEAL W R, LEONG K, ZAMORA A, et al. A low-power 670-GHz InP HEMT receiver[J]. IEEE Transactions on Terahertz Science and Technology, 2016, 6(6):862-864.
doi: 10.1109/TTHZ.2016.2614264
|
[13] |
JOHN L, NEININGER P, FRIESICKE C, et al. A 280- 310 GHz InAlAs/InGaAs mHEMT power amplifier MMIC with 6.7-8.3 dBm output power[J]. IEEE Micro-wave and Wireless Components Letters, 2018, 29(2):143-145.
|
[14] |
TESSMANN A, LEUTHER A, HURM V, et al. A broad-band 220-320 ghz medium power amplifier module[C]// 2014 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS). IEEE, 2014: 1-4.
|
[15] |
ZHANG Y, YANG F. A D-Band Active Single Pole Dou-ble Throw Switch in 60-nm GaN/SiC Technology[C] // 2020 IEEE 5th International Conference on Integrated Circuits and Microsystems (ICICM). IEEE, 2020: 272-275.
|
[16] |
ĆWIKLIŃSKI M, BRÜCKNER P, LEONE S, 等. D-band and G-Band high-performance GaN power amplifier MMICs[J]. IEEE Transactions on Microwave Theory and Techniques, 2019, 67(12):5080-5089.
doi: 10.1109/TMTT.22
|
[17] |
STÄRKE P, FRITSCHE D, CARTA C et al. A 24.7 dBlow noise amplifier with variable gain and tunable matching in 130 nm SiGe at 200 GHz[C]// 2017 12th Eur-opean Microwave Integrated Circuits Conference (EuMIC). IEEE, 2017: 5-8.
|
[18] |
KHATIBI H, KHIYABANI S, AFSHARI E. A 183 GHz Desensitized Unbalanced Cascode Amplifier With 9.5-dB Power Gain and 10-GHz Band Width and- 2 dBm Saturation Power[J]. IEEE Solid-State Circuits Letters, 2018, 1(3):58-61.
|
[19] |
TOKGOZ K K, ABDO I, FUJIMURA T, et al. A 273- 301-GHz amplifier with 21-dB peak gain in 65-nm standard bulk CMOS[J]. IEEE Microwave and Wireless Components Letters, 2019, 29(5):342-344.
doi: 10.1109/LMWC.7260
|
[20] |
MOSTAJERAN A, NAGHAVI S M, EMADI M, et al. A high-resolution 220-GHz ultra-wideband fully integrated ISAR imaging system[J]. IEEE Transactions on Microwave Theory and Techniques, 2018, 67(1):429-442.
doi: 10.1109/TMTT.2018.2874666
|
[21] |
KIM Y, ZHANG Y, RECK T J, et al. A 183-GHz InP/CMOS-hybrid heterodyne-spectrometer for spaceborne atmospheric remote sensing[J]. IEEE Transactions on Terahertz Science and Technology, 2019, 9(3):313-334.
doi: 10.1109/TTHZ.5503871
|
[22] |
KOO H, KIM C-Y, HONG S. A 254 GHz CMOS tran-smitter with VCo-Q modulation[J]. IEEE Microwave and Wireless Components Letters, 2016, 26(6):458-460.
doi: 10.1109/LMWC.2016.2562099
|
[23] |
RODRÍGUEZ-VÁZQUEZ P, GRZYB J, HEINEMANN B et al. A 16-QAM 100-Gb/s 1-M wireless link with an EVM of 17% at 230 GHz in an SiGe technology[J]. IEEE Microwave and Wireless Components Letters, 2019, 29(4):297-299.
doi: 10.1109/LMWC.7260
|
[24] |
ABDO I, DA GOMEZ C, WANG C et al. 22.2 A 300 GHz-Band Phased-Array Transceiver Using Bi-Directional Outphasing and Hartley Architecture in 65nm CMOS[C]// 2021 IEEE International Solid-State Circuits Conference (ISSCC). IEEE, 2021: 316-318.
|
[25] |
CHOI K-S, UTOMO D R, KIM K-M et al. 29.7 A 490 GHz 32mW Fully Integrated CMOS Receiver Adopting Dual-Locking FLL[C]// 2020 IEEE International Solid-State Circuits Conference--(ISSCC). IEEE 2020: 452-454.
|
[26] |
LEE S, HARA S, YOSHIDA T, et al. An 80-Gb/s 300- GHz-band single-chip CMOS transceiver[J]. IEEE Journal of Solid-State Circuits, 2019, 54(12):3577-3588.
doi: 10.1109/JSSC.4
|
[27] |
DAN I, DUCOURNAU G, HISATAKE S, et al. A super-heterodyne 300 GHz wireless link for ultra-fast terahertz communication systems[J]. International Journal of Microwave and Wireless Technologies, 2020, 12(7):578-587.
doi: 10.1017/S1759078720000495
|
[28] |
NIU Z, ZHANG B, WANG J, et al. The research on 220 GHz multicarrier high-speed communication system[J]. China Communications, 2020, 17(3):131-139.
|
[29] |
KATAYAMA K, TAKANO K, AMAKAWA S et al. A 300 GHz CMOS transmitter with 32-QAM 17.5 Gb/s/ch capability over six channels[J]. IEEE Journal of Solid-State Circuits, 2016, 51(12):3037-3048.
doi: 10.1109/JSSC.2016.2602223
|
[30] |
KOENIG S, LOPEZ-DIAZ D, ANTES J et al. Wireless sub-THz communication system with high data rate[J]. Nature photonics, 2013, 7(12):977-981.
doi: 10.1038/nphoton.2013.275
|
[31] |
YU X, JIA S, HU H et al. 160 Gbit/s photonics wireless transmission in the 300-500 GHz band[J]. Apl Photonics, 2016, 1(8):81301.
doi: 10.1063/1.4960136
|
[32] |
LI X, YU J, ZHAO L et al. 1-Tb/s millimeter-wave signal wir-eless delivery at D-band[J]. Journal of Lightwave Tech-nology, 2019, 37(1):196-204.
|
[33] |
JIA S, ZHANG L, WANG S et al. 2× 300 Gbit/s linerate PS-64QAM-OFDM THz photonic-wireless trans-mission[J]. Journal of Lightwave Technology, 2020, 38(17):4715-4721.
doi: 10.1109/JLT.50
|
[34] |
NGO H Q, LARSSON E G, MARZETTA T L. Energy and spectral efficiency of very large multiuser MIMO systems[J]. IEEE Transactions on Communications, 2013, 61(4):1436-1449.
doi: 10.1109/TCOMM.2013.020413.110848
|
[35] |
RUSEK F, PERSSON D, LAU B K et al. Scaling up MIMO: Opportunities and challenges with very large arrays[J]. IEEE signal processing magazine, 2012, 30(1):40-60.
|
[36] |
LARSSON E G, EDFORS O, TUFVESSON F et al. Ma-ssive MIMO for next generation wireless systems[J]. IEEE communications magazine, 2014, 52(2):186-195.
|
[37] |
AKYILDIZ I F, JORNET J M. Realizing ultra-massive MIMO (1024× 1024) communication in the (0.06-10) terahertz band[J]. Nano Communication Networks, 2016, 8:46-54.
doi: 10.1016/j.nancom.2016.02.001
|
[38] |
NING B, CHEN Z, CHEN W et al. Terahertz multi-user massive MIMO with intelligent reflecting surface: Beam training and hybrid beamforming[J]. IEEE Transactions on Vehicular Technology, 2021, 70(2):1376-1393.
doi: 10.1109/TVT.2021.3052074
|
[39] |
PUERTA R, YU J, LI X et al. Demonstration of 352 Gbit/s photonically-enabled D-band wireless delivery in one 2× 2 MIMO system[C]//Optical Fiber Communication Conference[J]. Optical Society of America, 2017: Tu3B-3.
|
[40] |
NING B, CHEN Z, TIAN Z et al. A Unified 3D Beam Training and Tracking Procedure for Terahertz Commun-ication[J]. IEEE Transactions on Wireless Commun-ications, 2021.
|
[41] |
MARZETTA T L. Noncooperative cellular wireless with unlimited numbers of base station antennas[J]. IEEE transactions on wireless communications, 2010, 9(11):3590-3600.
doi: 10.1109/TWC.2010.092810.091092
|
[42] |
PANG X, CABALLERO A, DOGADAEV A et al. 100 Gbit/s hybrid optical fiber-wireless link in the W-band (75-110 GHz)[J]. Optics express, 2011, 19(25):24944-24949.
doi: 10.1364/OE.19.024944
|
[43] |
YU J, LI X, ZHANG J et al. 432-Gb/s PDM-16QAM signal wireless delivery at W-band using optical and ant-enna polarization multiplexing[C]// 2014 The European Conference on Optical Communication (ECOC). IEEE, 2014: 1-3.
|
[44] |
LI X, DONG Z, YU J et al. Demonstration of ultra-high bit rate fiber wireless transmission system of 108-Gb/s data over 80-km fiber and 2× 2 MIMO wireless links at 100GHz W-band frequency[C]// Optical Fiber Communication Conference. Optical Society of America, 2013: JW2A-75.
|
[45] |
LI X, YU J. Over 100 Gb/s ultrabroadband MIMO wireless signal delivery system at the D-band[J]. IEEE Photonics Journal, 2016, 8(5):1-10.
|
[46] |
LI X, YU J, XIAO J. et al. Photonics-aided over 100-Gbaud all-band (D-, W-and V-band) wireless delivery[C]// ECOC 2016; 42nd European Conference on Optical Communication. VDE, 2016: 1-3.
|