[1] |
郝志虎. 高速公路特长隧道群安全综合评价研究[D]. 西安: 长安大学, 2008.
|
[2] |
巩江峰, 唐国荣, 王伟, 范磊. 截至2021年底中国铁路隧道情况统计及高黎贡山隧道设计施工概况[J]. 隧道建设(中英文), 2022, 42(3): 508-517.
|
[3] |
冯爱军. 中国城市轨道交通2021年数据统计与发展分析[J]. 隧道建设(中英文), 2022, 42(2): 336-341.
|
[4] |
王梦恕. 中国铁路, 隧道与地下空间发展概况[J]. 隧道建设, 2010, 30(4): 351-364.
|
[5] |
严金秀. 中国隧道工程技术发展 40 年[J]. 隧道建设(中英文), 2019, 39(4):537-54.
|
[6] |
ILLINGWORTH J, KITTLER J. A survey of the Hough transform[J]. Computer vision, graphics, and image processing, 1988, 44(1): 87-116.
doi: 10.1016/S0734-189X(88)80033-1
|
[7] |
VON GIOI R G, JAKUBOWICZ J, MOREL J M, et al. LSD: A fast line segment detector with a false detection control[J]. IEEE transactions on pattern analysis and machine intelligence, 2008, 32(4): 722-732.
doi: 10.1109/TPAMI.2008.300
|
[8] |
ZHOU Y T, VENKATESWAR V, CHELLAPPA R. Edge detection and linear feature extraction using a 2-D random field model[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989, 11(1): 84-95.
doi: 10.1109/34.23115
|
[9] |
GALAMHOS C, MATAS J, KITTLER J. Progressive probabilistic Hough transform for line detection[C]// Proceedings. 1999 IEEE computer society conference on computer vision and pattern recognition (Cat. No PR00149), IEEE, 1999, 1: 554-560.
|
[10] |
韩秋蕾, 朱明, 姚志军. 基于改进 Hough 变换的图像线段特征提取[J]. 仪器仪表学报, 2004 (z3): 436-439.
|
[11] |
林玉池, 谢妤婵, 刘启海. 基于Hough变换的线段提取新方法[J]. 纳米技术与精密工程, 2009, 7(5):433-438.
|
[12] |
张培宣, 陈晓东, 孔帅, 等. 基于Hough变换原理的海冰厚度识别方法[J]. 海洋学报, 2022, 44(07):161-169.
|
[13] |
曹家乐, 李亚利, 孙汉卿, 等. 基于深度学习的视觉目标检测技术综述[J]. 中国图象图形学报, 2022, 27(6):1697-1722.
|
[14] |
LAW H, DENG J. Cornernet: Detecting objects as paired keypoints[C]// Proceedings of the European conference on computer vision (ECCV), 2018: 734-750.
|
[15] |
NEWELL A, YANG K, DENG J. Stacked hourglass networks for human pose estimation[C]// European conference on computer vision, Springer, Cham, 2016: 483-499.
|
[16] |
ZHOU X, ZHUO J, KRAHENBUHL P. Bottom-up object detection by grouping extreme and center points[C]// Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2019: 850-859.
|
[17] |
DUAN K, BAI S, XIE L, et al. Centernet: Keypoint triplets for object detection[C]// Proceedings of the IEEE/CVF international conference on computer vision, 2019: 6569-6578.
|
[18] |
LAW H, TENG Y, RUSSAKOVSKY O, et al. Cornernet-lite: Efficient keypoint based object detection[J]. arXiv preprint arXiv:1904.08900, 2019. https://doi.org/10.48550/arXiv.1904.08900.
|
[19] |
林林, 王延杰, 孙海超. 基于改进热图损失函数的目标6D姿态估计算法[J]. 液晶与显示, 2022, 37(7):913-923.
|
[20] |
KITTLER J. On the accuracy of the Sobel edge detector[J]. Image and Vision Computing, 1983, 1(1): 37-42.
doi: 10.1016/0262-8856(83)90006-9
|
[21] |
ROBERTS L G. Machine perception of three dimensional solids[D]. Massachusetts Institute of Technology, 1963.
|
[22] |
LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.
doi: 10.1109/5.726791
|
[23] |
CANNY J. A computational approach to edge detection[J]. IEEE Transactions on pattern analysis and machine intelligence, 1986(6): 679-698.
pmid: 21869365
|
[24] |
KONISHI S, YUILLE A L, COUGHLAN J M, etal. Statistical edge detection: Learning and evaluating edge cues[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(1): 57-74.
doi: 10.1109/TPAMI.2003.1159946
|
[25] |
MARTIN D R, FOWLKES C C, MALIK J. Learning to detect natural image boundaries using local brightness, color, and texture cues[J]. IEEE transactions on pattern analysis and machine intelligence, 2004, 26(5): 530-549.
pmid: 15460277
|
[26] |
DOLLAR P, ZITNICK C L. Fast edge detection using structured forests[J]. IEEE transactions on pattern analysis and machine intelligence, 2014, 37(8): 1558-1570.
doi: 10.1109/TPAMI.2014.2377715
|
[27] |
XIE S, TU Z. Holistically-nested edge detection[C]// Proceedings of the IEEE international conference on computer vision, 2015: 1395-1403.
|
[28] |
LIU Y, LEW M S. Learning relaxed deep supervision for better edge detection[C]// Proceedings of the IEEE conference on computer vision and pattern recognition, 2016: 231-240.
|
[29] |
WANG Y, ZHAO X, LI Y, et al. Deep crisp boundaries: From boundaries to higher-level tasks[J]. IEEE Transactions on Image Processing, 2018, 28(3): 1285-1298.
doi: 10.1109/TIP.2018.2874279
|
[30] |
DENG R, LIU S. Deep structural contour detection[C]// Proceedings of the 28th ACM international conference on multimedia, 2020: 304-312.
|
[31] |
THOMPSON J, JAIN A, LECUN Y, et al. Joint training of a convolutional network and a graphical model for human pose estimation[J]. Advances in Neural Information Processing Systems, 2014, 2(January):1799-1807.
|
[32] |
WEI S E, RAMAKRISHNA V, KANADE T, et al. Convolutional pose machines[C]// Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, 2016: 4724-4732.
|
[33] |
KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6):84-90.
doi: 10.1145/3065386
|
[34] |
DANG Q, YIN J Q, WANG B, et al. Deep learning based 2D human pose estimation: A survey[J]. Tsinghua Science and Technology, 2019, 24(6): 663-676.
doi: 10.26599/TST.2018.9010100
|
[35] |
雷冬冬, 王俊英, 董方敏, 等. 基于混合域注意力机制的服装关键点定位及属性预测算法[J]. 东华大学学报(自然科学版), 2022, 48(4):28-35.
|
[36] |
WANG Y, TEOH E K, SHEN D. Lane detection and tracking using B-Snake[J]. Image and Vision computing, 2004, 22(4): 269-280.
doi: 10.1016/j.imavis.2003.10.003
|
[37] |
SHI X, KONG B, ZHENG F. A new lane detection method based on feature pattern[C]. IEEE Image and Signal Processing, 2009:1-5.
|
[38] |
WANG S. A method of traffic lane detection and tracking[J]. Jisuanji Gongcheng yu Yingyong(Computer Engineering and Applications), 2011, 47(3): 244-248.
|
[39] |
KO Y, LEE Y, AZAM S, et al. Key points estimation and point instance segmentation approach for lane detection[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 23(7): 8949-8958.
doi: 10.1109/TITS.2021.3088488
|
[40] |
翁佳昊, 秦永法, 鹿晓峰, 等. 基于路径搜索的车道线检测算法[J]. 扬州大学学报(自然科学版), 2022, 25(2):69-73.
|
[41] |
LI C, LI M J, ZHAO Y G, et al. Layer recognition and thickness evaluation of tunnel lining based on ground penetrating radar measurements[J]. Journal of Applied Geophysics, 2011, 73(1): 45-48.
doi: 10.1016/j.jappgeo.2010.11.004
|
[42] |
WANG J, ZHANG J, COHN A G, et al. Arbitrarily-oriented tunnel lining defects detection from Ground Penetrating Radar images using deep Convolutional Neural networks[J]. Automation in Construction, 2022, 133: 104044.
doi: 10.1016/j.autcon.2021.104044
|