Frontiers of Data and Computing ›› 2024, Vol. 6 ›› Issue (3): 162-172.
CSTR: 32002.14.jfdc.CN10-1649/TP.2024.03.017
doi: 10.11871/jfdc.issn.2096-742X.2024.03.017
• Technology and Application • Previous Articles Next Articles
Received:
2023-10-19
Online:
2024-06-20
Published:
2024-06-21
KOU Dazhi. Automatic Teeth Segmentation on Dental Panoramic Radiographs with Deep Learning[J]. Frontiers of Data and Computing, 2024, 6(3): 162-172, https://cstr.cn/32002.14.jfdc.CN10-1649/TP.2024.03.017.
Table 1
Segmentation results of individual teeth on the testing dataset"
牙齿类型 | Dice(%) | Jaccard(%) | Recall(%) | Precision(%) |
---|---|---|---|---|
中切牙 | 94.46±3.74 | 89.72±6.29 | 93.29±5.74 | 96.01±4.50 |
侧切牙 | 95.00±3.17 | 90.63±5.36 | 94.16±4.65 | 96.10±4.21 |
尖牙 | 95.48±3.22 | 91.51±5.22 | 94.93±4.08 | 96.23±4.40 |
第一前磨牙 | 94.23±6.61 | 89.56±7.72 | 93.72±7.74 | 95.07±7.24 |
第二前磨牙 | 94.99±6.72 | 90.93±7.67 | 94.48±7.51 | 95.71±7.03 |
第一磨牙 | 94.40±6.56 | 89.85±7.57 | 93.84±7.42 | 95.18±6.96 |
第二磨牙 | 95.32±2.28 | 91.15±4.05 | 95.19±3.79 | 95.65±3.62 |
第三磨牙 | 93.34±10.26 | 88.56±11.27 | 92.43±10.92 | 94.78±11.32 |
平均 | 94.65±5.70 | 90.29±7.07 | 94.06±6.71 | 95.62±6.39 |
Table 4
Comparison of individual teeth segmentation results on the testing dataset with different methods"
方法 | Dice(%) | Jaccard(%) | Recall(%) | Precision(%) |
---|---|---|---|---|
Mask R-CNN | 91.07±10.01 | 84.56±10.62 | 88.08±10.62 | 94.76±10.91 |
TDN+UNet | 92.36±9.39 | 86.77±11.36 | 90.66±11.19 | 94.83±9.06 |
TDN+Residual U-Net | 93.41±8.37 | 88.40±9.93 | 94.28±8.40 | 92.97±9.80 |
TDN+Attention U-Net | 93.78±8.51 | 89.07±10.00 | 94.44±9.11 | 93.55±9.16 |
TDN+DeepLab V3+ | 93.80±8.04 | 89.01±9.23 | 94.45±8.35 | 93.52±9.02 |
TDN+TransUNet | 94.09±8.24 | 89.55±9.50 | 93.58±8.66 | 94.93±9.01 |
Ours(w/o MMAM) | 94.48±5.79 | 89.92±7.39 | 93.29±7.20 | 96.00±5.98 |
Ours(w/o MD) | 94.57±6.49 | 90.17±7.84 | 94.28±7.31 | 95.16±7.22 |
Ours | 94.65±5.70 | 90.29±7.07 | 94.06±6.71 | 95.62±6.39 |
[1] | KRIZHEVSKY A, SUTSKEVER I, HINTON G. ImageNet classification with deep convolutional neural networks[J]. Advances in Neural Information Processing Systems, 2012, 25(2) : 84-90. |
[2] |
SHELHAMER E, LONG J, DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4): 640-651.
doi: 10.1109/TPAMI.2016.2572683 pmid: 27244717 |
[3] | RONNEBERGER O, FISCHER P, BROX T. U-net: Convolutional networks for biomedical image segmentation.[C]. In Proceedings of 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, 2015: 234-241. |
[4] | ZHANG Z, LIU Q, WANG Y. Road Extraction by Deep Residual U-Net[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(5): 749-753. |
[5] | CHEN L C, ZHU Y, PAPANDREOU G, et al. Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation[C]. European Conference on Computer Vision, 2018: 11211. |
[6] | REDMON J, DIVVALA S, GIRSHICK R, et al. You Only Look Once: Unified, Real-Time Object Detection[C]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016: 779-788. |
[7] |
REN S, HE K, GIRSHICK R, et al. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
doi: 10.1109/TPAMI.2016.2577031 pmid: 27295650 |
[8] | LIN T, DOLLÁR P, GIRSHICK R, et al. Feature Pyramid Networks for Object Detection.[C]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017: 936-944. |
[9] | HE K, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN.[C]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017: 2980-2988. |
[10] | CHU X, ZHENG A, ZHANG X, et al. Detection in Crowded Scenes: One Proposal, Multiple Predictions.[C]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2020: 12211-12220. |
[11] | SHEN D, WU G, SUK H I. Deep Learning in Medical Image Analysis[J]. Annual Review of Biomedical Engineering, 2017, 19(1): 221-248. |
[12] | HWANG J J, JUNG Y H, CHO B H, et al. An overview of deep learning in the field of dentistry[J]. Imaging science in dentistry. 2019, 49(1): 1-7. |
[13] |
MINNEMA J, VAN EIJNATTEN M, HENDRIKSEN A A, et al. Segmentation of dental cone-beam CT scans affected by metal artifacts using a mixed-scale dense convolutional neural network[J]. Medical Physics, 2019, 46(11): 5027-5035.
doi: 10.1002/mp.13793 pmid: 31463937 |
[14] | WANG H, MINNEMA J, BATENBURG K J, et al. Multiclass CBCT ImageSegmentation for Orthodontics with Deep Learning[J]. Journal of Dental Research, 2021, 100(9): 943-949. |
[15] | WANG Y, ZHAO L, SONG Z, et al. Organ at Risk Segmentation in Head and Neck CT Images by Using a Two-Stage Segmentation Framework Based on 3D U-Net: in IEEE Access, 10.1109/ACCESS.2019.2944958[P]. 2019, 7: 144591-144602. |
[16] | QIU B, GUO J, KRAEIMA J, et al. Automatic segmentation of the mandible from computed tomography scans for 3D virtual surgical planning using the convolutional neural network[J]. Physics in Medicine and Biology, 2019, 64(17): 175020. |
[17] | CUI Z, LI C, WNAG W. ToothNet: Automatic Tooth Instance Segmentation and Identification From Cone Beam CT Images[C]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019: 6361-6370. |
[18] |
CUI Z, FANG Y, MEI L, et al. A fully automatic AI system for tooth and alveolar bone segmentation from cone-beam CT images[J]. Nature Communications, 2022, 13(1): 2096.
doi: 10.1038/s41467-022-29637-2 pmid: 35440592 |
[19] | ZHU H, CAO Z, LIAN L, et al. CariesNet: a deep 1eaming approach for segmentation of mu1ti stage caries 1esion from ora1 panoramic x ray image[J]. Neural Computing and Applications, 2022: 1-9. |
[20] | YANG H, JO E, KIM H J, et al. Deep Learning for Automated Detection of Cyst and Tumors of the Jaw in Panoramic Radiographs[J]. Journal of Clinical Medicine, 2020, 9(6): 1839. |
[21] | SUKEGAWA S, YOSHII K, HARA T, et al. Multi-task deep learning model for classification of dental implant brand and treatment stage using dental panoramic radiograph images[J]. Biomolecules, 2021, 11(6): 815. |
[22] | KROIS J, EKERT T, MEINHOLD L, et al. Deep learning for the radiographic detection of periodontal bone loss[J]. Scientific Reports, 2019, 9(1): 1-6. |
[23] |
KIM J, LEE H S, SONG I S, et al. DeNTNet: Deep Neural Transfer Network for the detection of periodontal bone loss using panoramic dental radiographs[J]. Scientific Reports, 2019, 9(1): 17615.
doi: 10.1038/s41598-019-53758-2 pmid: 31772195 |
[24] | CHANG H J, LEE S J, YONG T H, et al. Deep Learning Hybrid Method to Automatically Diagnose Periodontal Bone Loss and Stage Periodontitis[J]. Scientific Reports, 2020, 10(1): 7531. |
[25] |
JIANG L, CHEN D, CAO Z, et al. A two-stage deep learning architecture for radiographic staging of periodontal bone loss[J]. BMC Oral Health, 2022, 22(1): 106.
doi: 10.1186/s12903-022-02119-z pmid: 35365122 |
[26] | TUZOFF D V, TUZOVA L N, BORNSTEINM M, et al. Tooth detection and numbering in panoramic radiographs using convolutional neural networks[J]. Dentomaxillofacial Radiology, 2019, 48(4): 20180051. |
[27] |
VINAYAHALINGAM S, XI T, BERGÉ S, et al. Automated detection of third molars and mandibular nerve by deep learning[J]. Scientific Reports, 2019, 9(1): 9007.
doi: 10.1038/s41598-019-45487-3 pmid: 31227772 |
[28] | KOCH TL, PERSLEV M, IGEL C, et al. Accurate segmentation of dental panoramic radiographs with U-Nets[C]. 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), 2019: 15-19. |
[29] | CHEN Q, ZHAO Y, LIU Y, et al. MSLPNet: multi-scale location perception network for dental panoramic X-ray image segmentation[J]. Neural Computing and Applications, 2021, 33(16): 10277-10291. |
[30] | JADER G, FONTINELI J, RUIZ M, et al. Deep instance segmentation of teeth in panoramic X-ray images[C]. 31st Conference on Graphics, Patterns and Images (SIBGRAPI), 2018: 400-407 |
[31] | LEE J H, HAN S S, KIM Y H, et al. Application of a fully deep convolutional neural network to the automation of tooth segmentation on panoramic radiographs[J]. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, 2020, 129(6): 635-642. |
[32] | LEITE A F, GERVEN A V, WILLEMS H, et al. Artificial intelligence-driven novel tool for tooth detection and segmentation on panoramic radiographs[J]. Clinical Oral Investigations, 2020, 25(4): 2257-2267. |
[33] | CHA J Y, YOON H I, YEO I S, et al. Panoptic segmentation on panoramic radiographs: Deep learning-based segmentation of various structures including maxillary sinus and mandibular canal[J]. Journal of Clinical Medicine, 2021, 10(12): 2577 |
[34] | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]. NIPS'17: Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017: 6000-6010. |
[35] | OKTAY O, SCHLEMPER J, FOLGOC L L, et al. Attention U-Net: Learning Where to Look for the Pancreas[C]. 1st Conference on Medical Imaging with Deep Learning(MIDL 2018), 2018. |
[36] |
HU J, SHEN L, ALBANIE G, et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 2011-2023.
doi: 10.1109/TPAMI.2019.2913372 pmid: 31034408 |
[37] | ROY G, NAVAB N, WACHINGER C. Recalibrating fully convolutional networks with spatial and channel “Squeeze and Excitation” blocks[J]. IEEE Transactions on Medical Imaging, 2019, 38(2): 540-549. |
[38] | CHOLLET F, Keras[OL]. https://github.com/fchollet/keras. |
[39] | CHEN J, LU Y, YU Q, et al. TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation[J/OL]. arXiv:2102.043062021.https://doi.org/10.48550/arXiv.2102.04306. |
[1] | LIAO Libo, WANG Shudong, SONG Weimin, ZHANG Zhaoling, LI Gang, HUANG Yongsheng. The Study of Jet Tagging Algorithm Based on DeepSets at CEPC [J]. Frontiers of Data and Computing, 2024, 6(3): 108-115. |
[2] | YAN Jin, DONG Kejun, LI Hongtao. A Deep Web Tracker Detection Method with Coordinated Semantic and Co-Occurrence Features [J]. Frontiers of Data and Computing, 2024, 6(3): 127-138. |
[3] | WANG Zhiyong, LIU Jingjing, WANG Xinming, CHEN Bowen, NIE Wei, ZHANG Hanlin, LIU Honghai. Advancements and Frontiers in Autism Diagnosis and Treatment Based on Artificial Intelligence [J]. Frontiers of Data and Computing, 2024, 6(3): 15-27. |
[4] | CAI Chengfei, LI Jun, JIAO Yiping, WANG Xiangxue, GUO Guanchen, XU Jun. Progress and Challenges of Medical Multimodal Data Fusion Methods Based on Deep Learning in Oncology [J]. Frontiers of Data and Computing, 2024, 6(3): 3-14. |
[5] | ZHENG Yinuo, SUN Muyi, ZHANG Hongyun, ZHANG Jing, DENG Tianzheng, LIU Qian. Application of Deep Learning in Dental Implant Imaging: Research Progress and Challenges [J]. Frontiers of Data and Computing, 2024, 6(3): 41-49. |
[6] | HE Ruilin, YANG Xinyi, SUN Hongzan, LI Chen. The Latest Development and Prospects of Histopathological Image Analysis Methods Based on Graph Features [J]. Frontiers of Data and Computing, 2024, 6(2): 101-116. |
[7] | YUAN Jialin, OUYANG Rushan, DAI Yi, LAI Xiaohui, MA Jie, GONG Jingshan. Assessing the Clinical Utility of a Deep Learning-Based Model for Calcification Recognition and Classification in Mammograms [J]. Frontiers of Data and Computing, 2024, 6(2): 68-79. |
[8] | WANG Ziyuan, WANG Guozhong. Application of Improved Lightweight YOLOv5 Algorithm in Pedestrian Detection [J]. Frontiers of Data and Computing, 2023, 5(6): 161-172. |
[9] | JU Jiaji, HUANG Bo, ZHANG Shuai, GUO Ruyan. A Dual-Channel Sentiment Analysis Model Integrating Sentiment Lexcion and Self-Attention [J]. Frontiers of Data and Computing, 2023, 5(4): 101-111. |
[10] | LI JunFei, XU LiMing, WANG Yang, WEI Xin. Review of Automatic Citation Classification Based on Deep Learning Technology [J]. Frontiers of Data and Computing, 2023, 5(4): 86-100. |
[11] | ZHU Mingming, CAO Wudi, WU Lin, WANG Zixi, LIAO Qi, ZHANG Si, TANG Xiao, LI Jie, WANG Jing, WANG Yangang, WANG Zifa. The Development and Prospects of Informatization Applications in Dual-Carbon Atmospheric Environment Based on Artificial Intelligence and Big Data [J]. Frontiers of Data and Computing, 2023, 5(3): 2-12. |
[12] | LI Yan,HE Hongbo,WANG Runqiang. A Survey of Research on Microblog Popularity Prediction [J]. Frontiers of Data and Computing, 2023, 5(2): 119-135. |
[13] | LIU Yunfan,LI Qi,SUN Zhenan,TAN Tieniu. Face Age Editing Methods Based on Generative Adversarial Network: A Survey [J]. Frontiers of Data and Computing, 2023, 5(2): 2-23. |
[14] | HU Xiaoyan,XU Jiyao,ZOU Ziming. Preliminary Study on Paradigm Shift in Space Weather Research Driven by Big Data and Artificial Intelligence [J]. Frontiers of Data and Computing, 2023, 5(2): 24-36. |
[15] | TU Youyou,ZHENG Qijing,ZHAO Jin. Research on Quantum Proton Coupled Charge Transfer Process Based on Deep Neural Network [J]. Frontiers of Data and Computing, 2023, 5(2): 37-49. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||