数据与计算发展前沿 ›› 2025, Vol. 7 ›› Issue (2): 149-160.
CSTR: 32002.14.jfdc.CN10-1649/TP.2025.02.015
doi: 10.11871/jfdc.issn.2096-742X.2025.02.015
收稿日期:
2024-08-16
出版日期:
2025-04-20
发布日期:
2025-04-23
通讯作者:
郭惠婕
作者简介:
郭惠婕,中国药科大学信息化建设管理处,硕士,主要研究方向为医药大数据及天然药物药代动力学。基金资助:
GUO Huijie1,*(),ZHOU Yongjie2,XU Jianzhen2
Received:
2024-08-16
Online:
2025-04-20
Published:
2025-04-23
Contact:
GUO Huijie
摘要:
【目的】中药因其多成分、多靶点的作用机制而呈现出复杂性。人工智能因其卓越的数据处理能力,在中药成分靶标发现和药效研究中展现出巨大潜力,因此备受学术界和产业界的关注。然而,传统的人工智能方法在处理多维度数据时面临整合难题,导致训练过程模态缺失,从而影响药物识别的准确性和效果。【方法】本文探讨了深度学习等人工智能技术在中药药代动力学中的应用,以及多模态数据融合方法的实践手段,并将详细阐述这些方法在药物-靶标、药物-药物以及蛋白-蛋白相互作用中的应用。【结果】本文为中药靶标预测、药物相互作用和定量分析等药动学研究提供了多角度的知识服务。【结论】多模态数据融合方法的应用有望提升中药研究的效率与准确性,推动中药现代化进程,促进其在全球范围内的广泛应用。
郭惠婕,周泳杰,许建真. 基于多模态人工智能数据融合的中药药动学研究进展[J]. 数据与计算发展前沿, 2025, 7(2): 149-160.
GUO Huijie,ZHOU Yongjie,XU Jianzhen. A Survey of Pharmacokinetics of Traditional Chinese Medicine Based on Multimodal Artificial Intelligence Data Fusion[J]. Frontiers of Data and Computing, 2025, 7(2): 149-160, https://cstr.cn/32002.14.jfdc.CN10-1649/TP.2025.02.015.
[1] | YAMAGUCHI S, KANEKO M, NARUKAWA M. Approval success rates of drug candidates based on target, action, modality, application, and their combinations[J]. Clinical and Translational Science, 2021, 14(3): 1113-22. |
[2] | SHI X, CHANG M, ZHAO M, et al. Traditional Chinese medicine compounds ameliorating glomerular diseases via autophagy: A mechanism review[J]. Biomed Pharmacother, 2022, 156: 113916. |
[3] | LI Y, WANG Y, TAI W, et al. Challenges and Solutions of Pharmacokinetics for Efficacy and Safety of Traditional Chinese Medicine[J]. Current Drug Metabolism, 2015, 169: 765-76. |
[4] | SHI P, LIN X, YAO H. A comprehensive review of recent studies on pharmacokinetics of traditional Chinese medicines (2014-2017) and perspectives[J]. Drug Metabolism Reviews, 2018, 50: 161-92. |
[5] | MULLARD A. Parsing clinical success rates[J]. Nat Rev Drug Discov, 2016, 15(7): 447. |
[6] | LI Y, DENG X, XIONG H, et al. Deciphering the toxicity-effect relationship and action patterns of traditional Chinese medicines from a smart data perspective: a comprehensive review[J]. Front Pharmacol, 2023, 14: 1278014. |
[7] | WANG Y, SHI X, LI L, et al. The Impact of Artificial Intelligence on Traditional Chinese Medicine[J]. The American journal of Chinese medicine, 2021: 1-18. |
[8] | HIRSCHBERG J, MANNING C D. Advances in natural language processing[J]. Science, 2015, 349: 261-266. |
[9] | JANIESCH C, ZSCHECH P, HEINRICH K. Machine learning and deep learning[J]. Electronic Markets, 2021, 31: 685-695. |
[10] | PANDEY M A. Computer Vision[J]. International Journal for Research in Applied Science and Engineering Technology, 2023. |
[11] | GHARBIA M, CHANG-RICHARDS A Y, LU Y, et al. Robotic technologies for on-site building construction: A systematic review[J]. Journal of Building Engineering, 2020, 32: 101584. |
[12] | DAINA A, MICHIELIN O, ZOETE V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules[J]. Scientific Reports, 2017, 7: 42717. |
[13] | HADNI H, ELHALLAOUIA M. In silico design of EGFR(L858R/T790M/C797S) inhibitors via 3D-QSAR, molecular docking, ADMET properties and molecular dynamics simulations[J]. Heliyon, 2022, 8(11): e11537. |
[14] | GAO J, LI P, CHEN Z, et al. A Survey on Deep Learning for Multimodal Data Fusion[J]. Neural Computation, 2020, 32: 829-64. |
[15] | LIU M, GAO Y, YUAN Y, et al. Efficacy and safety of herbal medicine (Lianhuaqingwen) for treating COVID-19: A systematic review and meta-analysis[J]. Integrative medicine research., 2021, 10(1): 100644. |
[16] | HEARST M A. Support vector machines[J]. IEEE Intelligent Systems & Their Applications, 1998, 13: 18-28. |
[17] | KITSON N K, CONSTANTINOU A C, GUO Z G, et al. A survey of Bayesian Network structure learning[J]. Artificial Intelligence Review, 2021, 56: 8721-814. |
[18] | DAYHOFF J E, DELEO J M. Artificial neural networks[J]. Cancer, 2001, 91. |
[19] | BREIMAN L. Random forests[J]. Machine Learning, 2001, 45: 5-32. |
[20] | GU J, WANG Z, KUEN J, et al. Recent advances in convolutional neural networks[J]. Pattern Recognit, 2015, 77: 354-77. |
[21] | HUGHES J, REES S, KALINDJIAN S, et al. Principles of early drug discovery[J]. British Journal of Pharmacology, 2011, 162: 1239-1249 |
[22] | NABIZADEH F, MASROURI S, RAMEZANNEZHAD E, et al. Artificial intelligence in the diagnosis of multiple sclerosis: A systematic review[J]. Mult Scler Relat Disord, 2022, 59: 103673. |
[23] | IWATA H. Application of in Silico Technologies for Drug Target Discovery and Pharmacokinetic Analysis[J]. Chemical & pharmaceutical bulletin (Tokyo), 2023, 71(6): 398-405. |
[24] | SAMPENE A K, NYIRENDA F. Evaluating the effect of artificial intelligence on pharmaceutical product and drug discovery in China[J]. Future Journal of Pharmaceutical Sciences, 2024, 10(1): 58. |
[25] | ZHANG S, WANG W, PI X, et al. Advances in the Application of Traditional Chinese Medicine Using Artificial Intelligence: A Review[J]. The American journal of Chinese medicine, 2023, 51(5): 1067-1083. |
[26] | ARORA P, BEHERA M, SARAF S A, et al. Leveraging Artificial Intelligence for Synergies in Drug Discovery: From Computers to Clinics[J]. Current pharmaceutical design, 2024, 30(28): 2187-2205. |
[27] | MOINGEON P, KUENEMANN M, GUEDJ M. Artificial intelligence-enhanced drug design and development: Toward a computational precision medicine[J]. Drug Discov Today, 2022, 27(1): 215-222. |
[28] | LU L, LU T, TIAN C, et al. AI: Bridging Ancient Wisdom and Modern Innovation in Traditional Chinese Medicine[J]. JMIR Med Inform, 2024, 12: e58491. |
[29] | LI W, GE X, LIU S, et al. Opportunities and challenges of traditional Chinese medicine doctors in the era of artificial intelligence[J]. Frontiers in Medicine (Lausanne), 2023, 10: 1336175. |
[30] | ZENG J, JIA X. Systems Theory-Driven Framework for AI Integration into the Holistic Material Basis Research of Traditional Chinese Medicine[J]. Engineering, 2024. |
[31] | STAHLSCHMIDT S R, ULFENBORG B, SYNNERGREN J. Multimodal deep learning for biomedical data fusion: a review[J]. Briefings in Bioinformatics, 2022, 23. |
[32] | CHEN H, ENGKVIST O, WANG Y, et al. The rise of deep learning in drug discovery[J]. Drug Discovery Today, 2018, 23(6): 1241-1250. |
[33] | ZOU J, HUSS M, ABID A, et al. A primer on deep learning in genomics[J]. Nature Genetics, 2019, 51(1): 12-18. |
[34] | TORRISI M, POLLASTRI G, LE Q. Deep learning methods in protein structure prediction[J]. Computational and Structural Biotechnology Journal, 2020, 18: 1301-1310. |
[35] | NGUYEN T M, KIM N, KIM D H, et al. Deep Learning for Human Disease Detection, Subtype Classification, and Treatment Response Prediction Using Epigenomic Data[J]. Biomedicines, 2021, 9(11): 1733. |
[36] | ZHANG S, BAMAKAN S M H, QU Q, et al. Learning for Personalized Medicine: A Comprehensive Review From a Deep Learning Perspective[J]. IEEE Reviews in Biomedical Engineering, 2019, 12: 194-208. |
[37] | TWA M D. Deep Learning and Clinical Decision Support[J]. Optometry and Vision Science, 2018, 95(4). |
[38] | SINGH K, PIYUSH P, KUMAR R, et al. Multimodal Data Extraction & Fusion for Health Monitoring System and Early Diagnosis[C]// proceedings of the 2024 International Conference on Computational Intelligence and Computing Applications (ICCICA), 2024. |
[39] | LI Y, YANG M, ZHANG Z. A Survey of Multi-View Representation Learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2016, 31: 1863-1883. |
[40] | GAO J, LI J, LI Y. Approximate event detection over multi-modal sensing data[J]. Journal of Combinatorial Optimization, 2015, 32: 1002-1016. |
[41] | SHEN M R, HE Y, SHI S M. Development of chromatographic technologies for the quality control of Traditional Chinese Medicine in the Chinese Pharmacopoeia[J]. Journal of Pharmaceutical Analysis, 2021, 11(2): 155-162. |
[42] | WEIWE C. Research Progress on Spectral Analysis for Traditional Chinese Medicine(TCM)[J]. Acta Laser Biology Sinica, 2015. |
[43] | HAN C, LI J, HUI Q. Determination of Trace Elements in Jinqi, a Traditional Chinese Medicine[J]. Biological Trace Element Research, 2008, 122: 122-6. |
[44] | LUAN X, ZHANG L J, LI X Q, et al. Compound-based Chinese medicine formula: From discovery to compatibility mechanism[J]. Journal of Ethnopharmacology, 2020: 112687. |
[45] | WANG T, LIU J, LUO X, et al. Functional metabolomics innovates therapeutic discovery of traditional Chinese medicine derived functional compounds[J]. Pharmacology & Therapeutics 2021, 224: 107824. |
[46] | ACAR E, PAPALEXAKIS E E, GURDENIZ G, et al. Structure-revealing data fusion[J]. BMC Bioinformatics, 2014, 15. |
[47] | XU P, ZHU X, CLIFTON D A. Multimodal Learning With Transformers: A Survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 45: 12113-12132. |
[48] | LIANG P P, MORENCY L P. Tutorial on Multimodal Machine Learning: Principles, Challenges, and Open Questions[J]. Companion Publication of the 25th International Conference on Multimodal Interaction, 2023. |
[49] | BALTRUŠAITIS T, AHUJA C, MORENCY L-P. Multimodal Machine Learning: A Survey and Taxonomy[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 41: 423-443. |
[50] | ZHANG R, NIE F, LI X, et al. Feature selection with multi-view data: A survey[J]. Inf Fusion, 2019, 50: 158-167. |
[51] | WEI Y, WU D, TERPENNY J. Decision-Level Data Fusion in Quality Control and Predictive Maintenance[J]. IEEE Transactions on Automation Science and Engineering, 2021, 18(1): 184-194. |
[52] | WU Z, CAI L, MENG H M. Multi-level Fusion of Audio and Visual Features for Speaker Identification, F, 2005[C]. |
[53] | WEI Y W, WANG X, GUAN W, et al. Neural Multimodal Cooperative Learning Toward Micro-Video Understanding[J]. IEEE Transactions on Image Processing, 2020, 29: 1-14. |
[54] | LIU X, WANG L, WONG D F, et al. Understanding and Improving Encoder Layer Fusion in Sequence-to-Sequence Learning[J]. ArXiv, 2020, abs/2012.14768. |
[55] | KIELA D, GRAVE E, JOULIN A, et al. Efficient Large-Scale Multi-Modal Classification[C]// proceedings of the AAAI Conference on Artificial Intelligence, F, 2018. |
[56] | WU C, ZHANG X C, YANG Z J, et al. Learning to SMILES: BAN-based strategies to improve latent representation learning from molecules[J]. Briefings in Bioinformatics, 2021. |
[57] | SCHAUPERL M, DENNY R A. AI-Based Protein Structure Prediction in Drug Discovery: Impacts and Challenges[J]. Journal of Chemical Information and Modeling, 2022. |
[58] | ZENG X, TU X, LIU Y, et al. Toward better drug discovery with knowledge graph[J]. Current Opinion in Structural Biology, 2021, 72: 114-126. |
[59] | SAXENA S, SANGANI R, PRASAD S, et al. Large-Scale Knowledge Synthesis and Complex Information Retrieval from Biomedical Documents[J]. 2022 IEEE International Conference on Big Data (Big Data), 2022: 2364-2369. |
[60] | EBRAHIMI S, ARIK S Ö, DONG Y, et al. LANISTR: Multimodal Learning from Structured and Unstructured Data[J]. ArXiv, 2023, abs/2305.16556. |
[61] | PENG L, LIAO B, ZHU W, et al. Predicting Drug-Target Interactions With Multi-Information Fusion[J]. IEEE Journal of Biomedical and Health Informatics, 2017, 21: 561-572. |
[62] | DENG Y, XU X, QIU Y, et al. A multimodal deep learning framework for predicting drug-drug interaction events[J]. Bioinformatics, 2020. |
[63] | WANG B, XIE Z R, CHEN J, et al. Integrating Structural Information to Study the Dynamics of Protein-Protein Interactions in Cells[J]. Structure, 2018, 26 10: 1414-1424. |
[64] | DAI Y, WANG G, DAI J, et al. A multimodal deep architecture for traditional Chinese medicine diagnosis[J]. Concurrency and Computation: Practice and Experience, 2020, 32. |
[65] | GAW N, YOUSEFI S, GAHROOEI M R. Multimodal data fusion for systems improvement: A review[J]. IISE Transactions, 2021, 54: 1098-1116. |
[66] | GALLO I, CALEFATI A, NAWAZ S. Multimodal Classification Fusion in Real-World Scenarios[C]. 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR), 2017, 5: 36-41. |
[67] | BIAN J, LU H, DONG G, et al. Hierarchical multimodal self-attention-based graph neural network for DTI prediction[J]. Brief Bioinform, 2024, 25(4). |
[68] | XIA X, ZHU C, ZHONG F, et al. MDTips: a multimodal-data-based drug-target interaction prediction system fusing knowledge, gene expression profile, and structural data[J]. Bioinformatics, 2023, 39(7). |
[69] | YANG X, NIU Z, LIU Y, et al. Modality-DTA: Multimodality Fusion Strategy for Drug-Target Affinity Prediction[J]. IEEE/ACM Trans Comput Biol Bioinform, 2023, 20(2): 1200-10. |
[70] | ZHONG K Y, WEN M L, MENG F F, et al. MMDTA: A Multimodal Deep Model for Drug-Target Affinity with a Hybrid Fusion Strategy[J]. Journal of chemical information and modeling, 2024, 64(7): 2878-2888. |
[71] | DENG Z, XU J, FENG Y, et al. MAVGAE: a multimodal framework for predicting asymmetric drug-drug interactions based on variational graph autoencoder[J]. Comput Methods Biomech Biomed Engin, 2024: 1-13. |
[72] | CHEN S, SEMENOV I, ZHANG F, et al. An effective framework for predicting drug-drug interactions based on molecular substructures and knowledge graph neural network[J]. Computers in Biology and Medicine, 2024, 169: 107900. |
[73] | JIN Q, XIE J, HUANG D, et al. MSFF-MA-DDI: Multi-Source Feature Fusion with Multiple Attention blocks for predicting Drug-Drug Interaction events[J]. Computational Biology and Chemistry, 2024, 108: 108001. |
[74] | DUTTA P, SAHA S. Amalgamation of protein sequence, structure and textual information for improving protein-protein interaction identification[C]// proceedings of the Annual Meeting of the Association for Computational Linguistics, F, 2020. |
[75] | JHA K, SAHA S, KHUSHI M. Protein-Protein Interactions Prediction Based on Bi-directional Gated Recurrent Unit and Multimodal Representation[C]// proceedings of the International Conference on Neural Information Processing, F, 2020. |
[76] | LEI H, WEN Y, YOU Z, et al. Protein-Protein Interactions Prediction via Multimodal Deep Polynomial Network and Regularized Extreme Learning Machine[J]. IEEE Journal of Biomedical and Health Informatics, 2019, 23: 1290-1303. |
[1] | 贾子昂. 基于多源半监督学习的牙齿结构分割[J]. 数据与计算发展前沿, 2025, 7(2): 175-185. |
[2] | 蔡华谦, 刘逸豪, 关天鹏, 吴恺东, 杨婧如, 罗超然, 朱小杰, 刘佳, 黄罡. DPML: 一种面向科学数据语用的标记语言[J]. 数据与计算发展前沿, 2024, 6(4): 46-58. |
[3] | 王志永, 刘晶晶, 王新明, 陈博文, 聂伟, 张瀚林, 刘洪海. 孤独症人工智能诊疗进展及前沿[J]. 数据与计算发展前沿, 2024, 6(3): 15-27. |
[4] | 寇大治. 基于深度学习的口腔全景片牙齿自动分割方法[J]. 数据与计算发展前沿, 2024, 6(3): 162-172. |
[5] | 何睿琳, 杨欣怡, 孙洪赞, 李晨. 基于图特征的组织病理学图像分析方法的最新发展情况与展望[J]. 数据与计算发展前沿, 2024, 6(2): 101-116. |
[6] | 朱明明, 曹无敌, 吴林, 王自溪, 廖琦, 张思, 唐晓, 李杰, 王婧, 王彦棡, 王自发. 基于人工智能与大数据的双碳大气环境信息化应用进展与展望[J]. 数据与计算发展前沿, 2023, 5(3): 2-12. |
[7] | 胡晓彦,徐寄遥,邹自明. “大数据&人工智能”驱动的空间天气科研范式变革初步探索[J]. 数据与计算发展前沿, 2023, 5(2): 24-36. |
[8] | 齐法制,李刚,李纯,汪璐,张一,张正德,陈刚,罗武鸣,赵丽娜,胡誉,袁野. 基于人工智能的高能物理大数据技术与应用[J]. 数据与计算发展前沿, 2023, 5(2): 50-59. |
[9] | 王凡,冯立强,曹荣强. 大数据驱动的海洋人工智能服务平台设计与应用[J]. 数据与计算发展前沿, 2023, 5(2): 73-85. |
[10] | 王宗国,万萌,陈子逸,李凯,王晓光,刘淼,孟胜,王彦棡. 数据驱动的材料智能设计平台研究与应用[J]. 数据与计算发展前沿, 2023, 5(2): 86-96. |
[11] | 刘嘉琪,杨斌艳. 我国人工智能与社会科学耦合发展的热点与趋势研究——基于CiteSpace的文献计量分析[J]. 数据与计算发展前沿, 2022, 4(6): 77-91. |
[12] | 张润滋,刘文懋. AISecOps智能安全运营技术体系框架[J]. 数据与计算发展前沿, 2021, 3(3): 32-47. |
[13] | 袁勇,欧阳丽炜,王晓,王飞跃. 基于区块链的智能组件:一种分布式人工智能研究新范式[J]. 数据与计算发展前沿, 2021, 3(1): 1-14. |
[14] | 沈飙,陈扬,杨琛,刘博文. 海洋科学中尺度涡的计算机视觉检测和分析方法[J]. 数据与计算发展前沿, 2020, 2(6): 30-41. |
[15] | 莫梓嘉,高志鹏,苗东. 边缘智能:人工智能向边缘分布式拓展的新触角[J]. 数据与计算发展前沿, 2020, 2(4): 16-27. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||