[1] |
LI G, NING B, OTSUKA Y, et al. Challenges to Equatorial Plasma Bubble and Ionospheric Scintillation Short-Term Forecasting and Future Aspects in East and Southeast Asia[J]. Surv Geophys, 2021, 42: 201-238. https://doi.org/10.1007/s10712-020-09613-5.
|
[2] |
CHEN G, JIN H, YAN J Y, et al. Hainan Coherent Scatter Phased Array Radar (HCOPAR): System Design and Ionospheric Irregularity Observations[J]. IEEE Transactions on Geoscience & Remote Sensing, 2017, (8): 1-9.DOI:10.1109/TGRS.2017.2699280.
|
[3] |
CHEN G, WANG Z, JIN H, et al. A case study of the daytime intense radar backscatter and strong ionospheric scintillation related to the low-latitude E-region irregularities[J/OL]. Journal of Geophysical Research: Space Physics, 2020. DOI: 10.1029/2019JA027532.
|
[4] |
YAN C, CHEN G, WANG Z, et al. Statistical Characteristics of the Low-Latitude E-Region Irregularities Observed by the HCOPAR in South China[J]. Journal of Geophysical Research, A. Space Physics: JGR, 2022(1): 127.
|
[5] |
OKOH D, RABIU B, SHIOKAWA K, et al. First study on the occurrence frequency of equatorial plasma bubbles over West Africa using an all-sky airglow imager and GNSS receivers[J]. Journal of Geophysical Research: Space Physics, 2017, 122(12): 12,430-12, 444.
|
[6] |
LIU K, LI G, NING B, et al. Statistical characteristics of low-latitude ionospheric scintillation over China[J]. Advances in Space Research, 2015, 55(5): 1356-1365.
|
[7] |
NING B Q, HU L H, LI G Z, et al. The first time observations of low-latitude ionospheric irregularities by VHF radar in Hainan[J]. Science China Technological Sciences, 2012, 55: 1189-1197.
|
[8] |
尚社平, 史建魁, 阎敬业, 等. 基于海南VHF雷达观测的低纬E区场向不规则体研究[J]. 空间科学学报, 2014, 34(1): 10. DOI: 10.11728/cjss2014.01.053.
|
[9] |
尚社平, 史建魁, 闫敬业, 等. 海南VHF雷达观测到的低纬F区电离层场向不规则体事件分析[J]. 空间科学学报, 2017, 37(6): 8. DOI: 10.11728/cjss2017. 06.702.
|
[10] |
金晗. 海南地区低纬电离层场向不规则体的观测研究[D]. 武汉大学, 2019.
|
[11] |
MENDOZA M M, CHANG Y C, DMITRIEV A V, et al. Recovery of ionospheric signals using fully convolutional densenet and its challenges[J]. Sensors, 2021, 21(19): 6482.
|
[12] |
殷梦婷, 邹自明, 钟佳. 一种电离层TEC格点预测模型[J]. 空间科学学报, 2021, 41(4): 12.
|
[13] |
SHIDLER S A, RODRIGUES F S. Modeling equatorial ionospheric vertical plasma drifts using machine learning[J]. Earth, Planets and Space, 2020, 72(1): 1-10.
|
[14] |
秦佳媚, 钟鼎坤, 冯学尚, 等. 子午工程数据资源概述[J/OL]. 2021. DOI: 10.11922/csdata.2020.0080.zh.
|
[15] |
金晗, 燕春晓, 陈罡, 等. 2014-2019年海南富克站甚高频相干散射雷达回波数据集[J]. 中国科学数据: 中英文网络版, 2021, 6(2): 10. DOI: 10.11922/csdata.2020.0076.zh.
|
[16] |
JOCHER G, CHAURASIA A, QIU J. 2023. Ultralytics YOLO (Version 8.0.0) [Computer software]. https://github.com/ultralytics/ultralytics.
|
[17] |
BOCHKOVSKIY A, WANG C Y, LIAO H Y M. Yolov4: Optimal speed and accuracy of object detection[J]. arXiv preprint arXiv:2004.10934, 2020.
|
[18] |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]// Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 770-778.
|
[19] |
WANG C Y, LIAO H Y M, WU Y H, et al. CSPNet: A new backbone that can enhance learning capability of CNN[C]// Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops. 2020: 390-391.
|
[20] |
TAN M, PANG R, LE Q V. Efficientdet: Scalable and efficient object detection[C]// Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2020: 10781-10790.
|
[21] |
SOLOVYEV R, WANG W, GABRUSEVA T. Weighted boxes fusion: Ensembling boxes from different object detection models[J]. Image and Vision Computing, 2021, 107: 104117.
|
[22] |
PASZKE A, GROSS S, MASSA F, et al. Pytorch: An imperative style, high-performance deep learning library[J]. Advances in neural information processing systems, 2019, 32.
|
[23] |
MMPreTrain Contributors. 2023. OpenMMLab’s Pre-training Toolbox and Benchmark (Version 0.15.0) [Computer software]. https://github.com/open-mmlab/mmpretrain.
|
[24] |
MMYolo Contributors. 2018. OpenMMLab Yolo Toolbox and Benchmark [Computer software]. https://github.com/open-mmlab/mmyolo.
|