Frontiers of Data and Computing ›› 2025, Vol. 7 ›› Issue (2): 175-185.
CSTR: 32002.14.jfdc.CN10-1649/TP.2025.02.017
doi: 10.11871/jfdc.issn.2096-742X.2025.02.017
• Technology and Application • Previous Articles
Received:
2025-03-24
Online:
2025-04-20
Published:
2025-04-23
Contact:
JIA Ziang
E-mail:1510499650@qq.com
JIA Ziang. Teeth Structure Segmentation Based on Multi-Source Semi-Supervised Learning[J]. Frontiers of Data and Computing, 2025, 7(2): 175-185, https://cstr.cn/32002.14.jfdc.CN10-1649/TP.2025.02.017.
Table 2
CBAM-Unet Basic Model Setting"
Layer | Output Shape | Operation Type | Configuration |
---|---|---|---|
Input | (C, H, W) | Input Image | - |
enc1 | (16, H, W) | 2×Conv+BN+ReLU | |
enc2 | (32, H/2, W/2) | 2×Conv+BN+ReLU | |
enc3 | (64, H/4, W/4) | 2×Conv+BN+ReLU | |
enc4 | (128, H/8, W/8) | 2×Conv+BN+ReLU | |
center | (256, H/16,W/16) | 2×Conv+BN+ReLU | |
dec4 | (128, H/8, W/8) | 2×Conv+BN+ReLU | |
dec3 | (64, H/4, W/4) | 2×Conv+BN+ReLU | |
dec2 | (32, H/2, W/2) | 2×Conv+BN+ReLU | |
dec1 | (16, H, W) | 2×Conv+BN+ReLU | |
Output | (8, H, W) | 1×Conv |
[1] | RAJPURKAR P, LUNGREN M P. The Current and Future State of AI Interpretation of Medical Images[J]. New England Journal of Medicine, 2023, 388(21): 1981-1990. |
[2] | BRADY A. The vanishing radiologist—an unse-en danger, and a danger of being unseen[J]. Eu-ropean Radiology, 2021, 31(8): 5998-6000. |
[3] | HOLM P, VIGILD M, NITSCHKE I, et al. De-ntal care for aging populations in Denmark, Sw-eden, Norway, United Kingdom, and Germany[J]. Journal of Dental Education, 2005, 69(9): 987-997. |
[4] | GAO H, CHAE O. Individual tooth segmentatio-n from CT images using level set method with shape and intensity prior[J]. Pattern Recognition, 2010, 43(7): 2406-2417. |
[5] | GAN Y, XIA Z, XIONG J, et al. Toward accu-ratee tooth segmentation from computed tomography images using a hybrid level set model[J]. Medical Physics, 2015, 42(1): 14-27. |
[6] | KEYHANINEJAD S, ZOROOFI A, SETAREH-DAN K, et al. Automated segmentation of teeth in multi-slice CT images[C]. IET International Conference on Visual Information Engineering, St-evenage, Herts, UK. 2006: 339-344. |
[7] | LECUN Y, BENGIO Y, HINTON G. Deep lear-ning[J]. Nature, 2015, 521(7553): 436-444. |
[8] | LECUN Y, BOTTOU L, BENGIO Y, et al. Gr-adient-based learning applied to document recog-nition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324. |
[9] | CHO K, MERRIËNBOER B, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translate-on[J]. arXiv Preprint arXiv:1406.1078, 2014. |
[10] | RONNEBERGER O, FISCHER P, BROX T. U-net: Convolutional networks for biomedical ima-ge segmentation[C]// Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015, Munich, DE. 2015: 234-241. |
[11] | ÇIÇEK Ö, ABDULKADIR A, LIENKAMP S, et al. 3D U-Net: learning dense volumetric segm-entation from sparse annotation[C]// Medical Im-age Computing and Computer-Assisted Intervent-ion-MICCAI 2016. Athens, GR, 2016: 424-432. |
[12] | MILLETARI F, NAVAB N, AHMADI A. V-net: Fully convolutional neural networks for volumet-ric medical image segmentation[C]// 2016 Fourth International Conference on 3D Vision, San Francisco, CA, USA. 2016: 565-571. |
[13] | RAJPURKAR P, CHEN E, BANERJEE O, et al. AI in health and medicine[J]. Nature Medicine, 2022, 28(1): 31-38. |
[14] | SUN M, LI K, QI X, et al. Contextual informa-tion enhanced convolutional neural networks for retinal vessel segmentation in color fundus ima-ges[J]. Journal of Visual Communication and I-mage Representation, 2021, 77: 103134. |
[15] | HUANG G, LIU Z, MAATEN L, et al. Densely connected convolutional networks[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Hawaii, HI, USA, 2017: 4700-4708. |
[16] | SUN M, ZHOU W, QI X, et al. Prediction of BAP1 expression in uveal melanoma using dens-ely-connected deep classification networks[J]. Cancers, 2019, 11(10): 1579. |
[17] | TARVAINEN A, VALPOLA H. Mean teachers a-re better role models: Weight-averaged consiste-ncy tar-gets improve semi-supervised deep learn-ing results[J]. Advances in Neural Information Processing Systems, 2017, 30. |
[18] | JIAO R, ZHANG Y, DING L, et al. Learning with limited annotations: a survey on deep semi-supervised learning for medical image segment-ation[J]. Computers in Biology and Medicine, 2024, 169: 107840. |
[19] | LI D, YANG J, KREIS K, et al. Semantic seg-mentation with generative models: Semi-supervis-ed learning and strong out-of-domain generalizat-ion[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 8300-8311. |
[20] | XU D, WANG Z. Semi-supervised semantic seg-mentation using an improved generative adversa-rial network[J]. Journal of Intelligent & Fuzzy S-ystems, 2021, 40(5): 9709-9719. |
[21] | MITTAL S, TATARCHENKO M, BROX T. Se-mi-supervised semantic segmentation with high a-nd low-level consistency[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 43(4): 1369-1379. |
[22] | YU L, WANG S, LI X, et al. Uncertainty-aware self-ensembling model for semi-supervised 3D l-eft atrium segmentation[C]// Medical Image Co-mputing and Computer Assisted Intervention-MICCAI 2019, Shenzhen, 2019: 605-613. |
[23] | OUALI Y, HUDELOT C, TAMI M. Semi-super-vised semantic segmentation with cross-consiste-ncy training[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Re-cognition, Seattle, WA, USA, 2020: 12674-12684. |
[24] | WANG G, YE C, MAN B. Deep learning for t-omographic image reconstruction[J]. Nature Mac-hine Intelligence, 2020, 2(12): 737-748. |
[25] | CUI Z, FANG Y, MEI L, et al. A fully autom-atic AI system for tooth and alveolar bone seg-mentation from cone-beam CT images[J]. Nature Communications, 2022, 13(1): 2096. |
[26] | LI K, TAN M, XIAO D, et al. Research on ro-ad extraction from high-resolution remote sensin-g images based on improved UNet++[J]. IEEE Access, 2024, 12: 50300-50309. |
[27] | HAO J, ZHU Y, HE L, et al. T-Mamba: A uni-fied framework with Long-Range Dependency in dual-domain for 2D & 3D Tooth Segmentation[J]. arXiv preprint arXiv:2404.01065, 2024. |
[28] | CHEN S, ZHUO J, LI X, et al. CMT: Co-train-ing Mean-Teacher for Unsupervised Domain Ad-aptation on 3D Object Detection[C]// Proceedings of the 32nd ACM International Conference on Multimedia, Melbourne, VIC, AUS, 2024: 4738-4747. |
[29] | LI X, YU L, CHEN H, et al. Transformation c-onsistent self-ensembling model for semisupervis-ed medical image segmentation[J]. IEEE Transa-ctions on Neural Networks and Learning Systems, 2020, 32(2): 523-534. |
[30] | MENDEL R, RAUBER D, SOUZA L, et al. E-rror-correcting mean-teacher: Corrections instead of consistency-targets applied to semi-supervised medical image segmentation[J]. Computers in B-iology and Medicine, 2023, 154(C): 106585. |
[1] | GUO Huijie,ZHOU Yongjie,XU Jianzhen. A Survey of Pharmacokinetics of Traditional Chinese Medicine Based on Multimodal Artificial Intelligence Data Fusion [J]. Frontiers of Data and Computing, 2025, 7(2): 149-160. |
[2] | MA Qiuping, ZHANG Qi, ZHAO Xiaofan. Review of Research on Chart Question Answering [J]. Frontiers of Data and Computing, 2025, 7(1): 19-37. |
[3] | SHUI Yingyi, ZHANG Qi, LI Gen, ZHANG Shihao, WU Shang. A Review of Research on Social Network Influence Prediction Based on Multi-Class Features [J]. Frontiers of Data and Computing, 2025, 7(1): 2-18. |
[4] | JIN Jiali, GAO Siyuan, GAO Manda, WANG Wenbin, LIU Shaozhen, SUN Zhenan. A Survey of Face Age Editing Based on Generative Adversarial Networks and Diffusion Models [J]. Frontiers of Data and Computing, 2025, 7(1): 38-55. |
[5] | LU Chenghao,CHEN Xiuhong. IPDFF: Reconstructed Surface Network Based on Implicit Partition Learning Deep Feature Fusion [J]. Frontiers of Data and Computing, 2024, 6(6): 19-31. |
[6] | WEI Yijin,FAN Jingchao. Classification Model of Agricultural Science and Technology Policies Based on Improved BERT-BiGRU-Attention [J]. Frontiers of Data and Computing, 2024, 6(6): 53-61. |
[7] | HE Wentong,LUO Ze. Object Detection with Federated Learning for Wildlife Camera Trap Images [J]. Frontiers of Data and Computing, 2024, 6(6): 85-96. |
[8] | YAN Zhiyu, RU Yiwei, SUN Fupeng, SUN Zhenan. Research on Video Behavior Recognition Method with Active Perception Mechanism [J]. Frontiers of Data and Computing, 2024, 6(5): 66-79. |
[9] | CAI Huaqian, LIU Yihao, GUAN Tianpeng, WU Kaidong, YANG Jingru, LUO Chaoran, ZHU Xiaojie, LIU Jia, HUANG Gang. DPML: A Markup Language for Scientific Data Pragmatics [J]. Frontiers of Data and Computing, 2024, 6(4): 46-58. |
[10] | LIAO Libo, WANG Shudong, SONG Weimin, ZHANG Zhaoling, LI Gang, HUANG Yongsheng. The Study of Jet Tagging Algorithm Based on DeepSets at CEPC [J]. Frontiers of Data and Computing, 2024, 6(3): 108-115. |
[11] | YAN Jin, DONG Kejun, LI Hongtao. A Deep Web Tracker Detection Method with Coordinated Semantic and Co-Occurrence Features [J]. Frontiers of Data and Computing, 2024, 6(3): 127-138. |
[12] | WANG Zhiyong, LIU Jingjing, WANG Xinming, CHEN Bowen, NIE Wei, ZHANG Hanlin, LIU Honghai. Advancements and Frontiers in Autism Diagnosis and Treatment Based on Artificial Intelligence [J]. Frontiers of Data and Computing, 2024, 6(3): 15-27. |
[13] | KOU Dazhi. Automatic Teeth Segmentation on Dental Panoramic Radiographs with Deep Learning [J]. Frontiers of Data and Computing, 2024, 6(3): 162-172. |
[14] | CAI Chengfei, LI Jun, JIAO Yiping, WANG Xiangxue, GUO Guanchen, XU Jun. Progress and Challenges of Medical Multimodal Data Fusion Methods Based on Deep Learning in Oncology [J]. Frontiers of Data and Computing, 2024, 6(3): 3-14. |
[15] | ZHENG Yinuo, SUN Muyi, ZHANG Hongyun, ZHANG Jing, DENG Tianzheng, LIU Qian. Application of Deep Learning in Dental Implant Imaging: Research Progress and Challenges [J]. Frontiers of Data and Computing, 2024, 6(3): 41-49. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 112
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 97
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||