Frontiers of Data and Computing ›› 2023, Vol. 5 ›› Issue (6): 161-172.
CSTR: 32002.14.jfdc.CN10-1649/TP.2023.06.015
doi: 10.11871/jfdc.issn.2096-742X.2023.06.015
Previous Articles Next Articles
WANG Ziyuan(),WANG Guozhong*()
Received:
2022-07-11
Online:
2023-12-20
Published:
2023-12-25
WANG Ziyuan, WANG Guozhong. Application of Improved Lightweight YOLOv5 Algorithm in Pedestrian Detection[J]. Frontiers of Data and Computing, 2023, 5(6): 161-172, https://cstr.cn/32002.14.jfdc.CN10-1649/TP.2023.06.015.
Table 1
Performance comparison of target detection algorithms"
Algorithms | Input size | Test dataset | Speed/(frame s-1) | mAP(0.5)/% |
---|---|---|---|---|
Fast RCNN | 600×1000 | VOC2007 | 0.5 | 70.2 |
Faster RCNN | 600×1000 | VOC2007 | 5 | 73.5 |
SSD | 512×512 | VOC2007 | 18 | 76.6 |
YOLOv1 | 448×448 | VOC2007 | 46 | 62.8 |
YOLOv2 | 544×544 | MS COCO | 40 | 43.6 |
YOLOv3 | 608×608 | MS COCO | 24 | 58.7 |
YOLOv4 | 608×608 | MS COCO | 58 | 66.9 |
YOLOv5s | 608×608 | MS COCO | 69 | 57.8 |
Table 6
Performance comparison of different detection algorithms"
Model | Precision/% | Recall/% | AP(0.5)/% | FPS |
---|---|---|---|---|
Faster RCNN | 76.4 | 70.8 | 73.4 | 16.2 |
SAF-RCNN | 78.2 | 72.8 | 76.2 | 18.3 |
RepLoss | 82.0 | 73.9 | 79.1 | 10.7 |
SSD | 86.3 | 76.0 | 77.8 | 60.1 |
ALFNet | 87.5 | 70.6 | 78.3 | 46.0 |
CSP | 89.0 | 75.8 | 79.5 | 58.4 |
YOLOv5s | 88.8 | 80.2 | 81.6 | 83.2 |
YOLOv5s-D | 87.6 | 76.7 | 80.7 | 90.7 |
YOLOv5s-DA | 89.2 | 75.2 | 87.3 | 100.3 |
YOLOv5s-DAE | 91.5 | 72.1 | 89.2 | 106.7 |
[1] | DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]// 2005 IEEE computer society conference on computer vision and pattern recognition (CVPR'05), Ieee, 2005, 1: 886-893. |
[2] | DOLLÁR P, TU Z, PERONA P, et al. Integral channel features[J]. Proceedings of the British Machine Conference, 2009, 91: 1-11. |
[3] | LIU W, ANGUELOV D, ERHAN D, et al. Ssd: Single shot multibox detector[C]// European conference on computer vision, Springer, Cham, 2016: 21-37. |
[4] | REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]// Proceedings of the IEEE conference on computer vision and pattern recognition, 2016: 779-788. |
[5] | GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]// Proceedings of the IEEE conference on computer vision and pattern recognition, 2014: 580-587. |
[6] | ZHAO Y, SHI Y, WANG Z. The Improved YOLOV5 Algorithm and Its Application in Small Target Detection[C]// International Conference on Intelligent Robotics and Applications, Springer, Cham, 2022: 679-688. |
[7] | WOO S, PARK J, LEE J Y, et al. Cbam: Convolutional block attention module[C]// Proceedings of the European conference on computer vision (ECCV), 2018: 3-19. |
[8] |
ZHANG Y F, REN W, ZHANG Z, et al. Focal and efficient IOU loss for accurate bounding box regression[J]. Neurocomputing, 2022, 506: 146-157.
doi: 10.1016/j.neucom.2022.07.042 |
[9] | VASSILVITSKII S, ARTHUR D. k-means++: The advantages of careful seeding[C]// Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms, 2006: 1027-1035. |
[10] | KIRILLOV A, GIRSHICK R, HE K, et al. Panoptic feature pyramid networks[C]// Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2019: 6399-6408. |
[11] | REZATOFIGHI H, TSOI N, GWAK J Y, et al. Generalized intersection over union: A metric and a loss for bounding box regression[C]// Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2019: 658-666. |
[12] | CHOLLET F. Xception: Deep learning with depthwise separable convolutions[C]// Proceedings of the IEEE conference on computer vision and pattern recognition, 2017: 1251-1258. |
[13] | ZHU X, CHENG D, ZHANG Z, et al. An empirical study of spatial attention mechanisms in deep networks[C]// Proceedings of the IEEE/CVF international conference on computer vision, 2019: 6688-6697. |
[14] | SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-cam: Visual explanations from deep networks via gradient-based localization[C]// Proceedings of the IEEE international conference on computer vision, 2017: 618-626. |
[15] | YU J, JIANG Y, WANG Z, et al. Unitbox: An advanced object detection network[C]// Proceedings of the 24th ACM international conference on Multimedia, 2016: 516-520. |
[16] | AGARWAL N, GOEL S, ZHANG C. Acceleration via fractal learning rate schedules[C]// International Conference on Machine Learning, PMLR, 2021: 87-99. |
[17] | TANG S, GOTO S. Histogram of template for human detection[C]// 2010 IEEE International Conference on Acoustics, Speech and Signal Processing, IEEE, 2010: 2186-2189. |
[18] | REN S, HE K, GIRSHICK R, et al. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017, 39(06): 1137-1149. |
[19] | LI J, LIANG X, SHEN S M, et al. Scale-aware fast R-CNN for pedestrian detection[J]. IEEE transactions on Multimedia, 2017, 20(4): 985-996. |
[20] | GIRSHICK R. Fast r-cnn[C]// Proceedings of the IEEE international conference on computer vision, 2015: 1440-1448. |
[21] | WANG X, XIAO T, JIANG Y, et al. Repulsion loss: Detecting pedestrians in a crowd[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7774-7783. |
[22] |
LIU W, LIAO S, HU W. Efficient Single-Stage Pedestrian Detector by Asymptotic Localization Fitting and Multi-Scale Context Encoding[J]. IEEE Transactions on Image Processing, 2019, 29(99): 1413-1425.
doi: 10.1109/TIP.83 |
[23] | LIU W, HASAN I, LIAO S. Center and Scale Prediction: Anchor-free Approach for Pedestrian and Face Detection[J]. arXiv preprint arXiv:1904.02948, 2019. |
[1] | SHEN Zhihao, LI Na, YIN Shihao, DU Yi, HU Lianglin. Airfare Price Prediction Based on TPA-Transformer [J]. Frontiers of Data and Computing, 2023, 5(6): 115-125. |
[2] | ZHANG Rong, LIU Yuan. Multi-Level Data Augmentation Method for Aspect-Based Sentiment Analysis [J]. Frontiers of Data and Computing, 2023, 5(5): 140-153. |
[3] | JU Jiaji, HUANG Bo, ZHANG Shuai, GUO Ruyan. A Dual-Channel Sentiment Analysis Model Integrating Sentiment Lexcion and Self-Attention [J]. Frontiers of Data and Computing, 2023, 5(4): 101-111. |
[4] | LI JunFei, XU LiMing, WANG Yang, WEI Xin. Review of Automatic Citation Classification Based on Deep Learning Technology [J]. Frontiers of Data and Computing, 2023, 5(4): 86-100. |
[5] | LI Yan,HE Hongbo,WANG Runqiang. A Survey of Research on Microblog Popularity Prediction [J]. Frontiers of Data and Computing, 2023, 5(2): 119-135. |
[6] | LIU Yunfan,LI Qi,SUN Zhenan,TAN Tieniu. Face Age Editing Methods Based on Generative Adversarial Network: A Survey [J]. Frontiers of Data and Computing, 2023, 5(2): 2-23. |
[7] | TU Youyou,ZHENG Qijing,ZHAO Jin. Research on Quantum Proton Coupled Charge Transfer Process Based on Deep Neural Network [J]. Frontiers of Data and Computing, 2023, 5(2): 37-49. |
[8] | XU Songyuan,LIU Feng. ESDRec: A Data Recommendation Model for Earth Big Data Platform [J]. Frontiers of Data and Computing, 2023, 5(1): 55-64. |
[9] | LIU Qiwei,LI Jun,GU Beibei,ZHAO Zefang. TSAIE: Text Sentiment Analysis Model Based on Image Enhancement [J]. Frontiers of Data and Computing, 2022, 4(3): 131-140. |
[10] | CHEN Qiong,YANG Yong,HUANG Tianlin,FENG Yuan. A Survey on Few-Shot Image Semantic Segmentation [J]. Frontiers of Data and Computing, 2021, 3(6): 17-34. |
[11] | PU Xiaorong,HUANG Jiaxin,LIU Junchi,SUN Jiayu,LUO Jixiang,ZHAO Yue,CHEN Kecheng,REN Yazhou. A Survey on Clinical Oriented CT Image Denoising [J]. Frontiers of Data and Computing, 2021, 3(6): 35-49. |
[12] | HE Tao,WANG Guifang,MA Tingcan. Discovering Interdisciplinary Research Based on Word Embedding [J]. Frontiers of Data and Computing, 2021, 3(6): 50-59. |
[13] | XIAO Nan,ZHOU Mingzhu,XING Jun,LUO Ze,LI Xiaohui. Authenticity Identification of Cigarettes Based on Attention Mechanism and High-resolution Network [J]. Frontiers of Data and Computing, 2021, 3(5): 118-129. |
[14] | ZHANG Yining,HE Hongbo,WANG Runqiang. A Survey on Popular Digital Audio Prediction Techniques [J]. Frontiers of Data and Computing, 2021, 3(4): 81-92. |
[15] | CHEN Zijian,LI Jun,YUE Zhaojuan,ZHAO Zefang. Hybrid Recommendation Model Based on Autoencoder and Attribute Information [J]. Frontiers of Data and Computing, 2021, 3(3): 148-155. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||