[1] |
张雪, 张志强. 学科交叉研究系统综述[J]. 图书情报工作, 2020,64(14):112-125.
|
[2] |
刘群, 李素建. 基于《知网》的词汇语义相似度计算[J]. 中文计算语言学, 2002,7(2):59-76.
|
[3] |
Dong K, Xu H, Luo R, et al. An integrated method for interdisciplinary topic identification and prediction: a case study on information science and library science[J]. Scientometrics, 2018,115(2):849-868.
|
[4] |
商宪丽. 基于潜在主题的交叉学科知识组合与知识传播研究[D]. 华中师范大学, 2017.
|
[5] |
吴蕾, 田儒雅, 张学福. 基于主题相关分析的跨学科主题发现方法及实证研究—以动物资源与育种领域为例[J]. 图书情报工作, 2017,61(01):72-79.
|
[6] |
Porter A, Cohen A, Roessner D, et al. Measuring resear-cher interdisciplinarity[J]. Scientometrics, 2007,72(1):117-147.
|
[7] |
Mugabushaka A, Kyriakou A, Papazoglou T. Bibliometric indicators of interdisciplinarity: the potential of the lein-ster-cobbold diversity indices to study disciplinary diver-sity[J]. Scientometrics, 2016,107(2):593-607.
|
[8] |
Schummer J. Multidisciplinarity, interdisciplinarity, and patterns of research collaboration in nanoscience and nanotechnology[J]. Scientometrics, 2004,59(3):425-465.
|
[9] |
Abramo G, Angelo A, Costa D. Identifying interdiscip-linarity through the disciplinary classification of coauthors of scientific publications[J]. Journal of the American Society for Information Science and Technology, 2012,63(11):2206-2222.
|
[10] |
杜德慧, 李长玲, 相富钟, 等. 基于引文关键词的跨学科相关知识发现方法探讨[J]. 情报杂志, 2020,39(9):189-194.
|
[11] |
刘小慧, 李长玲, 崔斌, 等. 基于闭合式非相关知识发现的潜在跨学科合作研究主题识别—以情报学与计算机科学为例[J]. 情报理论与实践, 2017,40(09):71-76.
|
[12] |
李长玲, 刘小慧, 刘运梅, 等. 基于开放式非相关知识发现的潜在跨学科合作研究主题识别—以情报学与计算机科学为例[J]. 情报理论与实践, 2018,41(02):100-104.
|
[13] |
魏建香, 孙越泓, 苏新宁. 学科交叉知识挖掘模型研究[J]. 情报理论与实践, 2012,35(04):76-80.
|
[14] |
王卫军, 姚畅, 乔子越, 等. 基于词嵌入的国家自然科学基金学科交叉知识发现方法——以“人工智能”与“信息管理”为例[J]. 情报学报, 2021,40(08):831-845.
|
[15] |
Xu H, Guo T, Yue Z, et al. Interdisciplinary topics of information science: a study based on the terms interdisci-plinarity index series[J]. Scientometrics, 2016,106(2):583-601.
|
[16] |
Mao J, Liang Z, Cao Y, et al. Quantifying cross-dis-ciplinary knowledge flow from the perspective of con-tent: Introducing an approach based on knowledge memes[J]. Journal of Informetrics, 2020 14(4), Art. no. 101092.
|
[17] |
Kamada M, Asatani K, Isonuma M, et al. Discovering interdisciplinarily spread knowledge in the academic literature[J]. IEEE Access, 2021,9(1):124142-124151.
|
[18] |
Mikolov T, Sutskever I, Chen K, et al. Distributed rep-resentations of words and phrases and their composition-ality[C]. Advances in Neural Information Processing Sy-stems. Lake Tahoe, USA: Curran Associates, 2013: 3111-3119.
|
[19] |
Everitt BS, Dunn G. Applied multivariate data analysis, second edition[M]. Oxford: Oxford University Press, 2013: 48-73.
|
[20] |
松尾丰. 人工智能狂潮[M]. 北京: 机械工业出版社, 2016: 110-111.
|
[21] |
何涛, 王桂芳, 杨美妮, 等. 基于词嵌入语义的精准检索式构建方法[J]. 现代情报, 2018,38(11):55-58.
|
[22] |
Li K, Huang H, Tian S, et al. Improving one-class SVM for anomaly detection[C]. The 2003 International Confe-rence on Machine Learning and Cybernetics. Manhattan: IEEE, 2003: 3077-3081.
|
[23] |
Liu F, Ting K, Zhou Z. Isolation forest[C]. Eighth IEEE International Conference on Data Mining. Manhattan: IEEE, 2008: 413-422.
|
[24] |
Breunig MM, Kriegel HP, Ng RT, et al. LOF: identifying density-based local outliers[C]. SIGMOD Conference on Management of Data. Texas: ACM Press, 2000: 93-104.
|
[25] |
Peters ME, Neumann M, Iyyer M, et al. Deep contextua-lized word representations[C]. North American Associa-tion for Computational Linguistics. New Orleans: Asso-ciation for Computer Linguistics, 2018: 2227-2237.
|