[1] |
AUTH C ALLEN C., BLATTNER A., et al. A 22nm High Performance and Low-Power CMOS Technology Featuring Fully-Depleted Tri-Gate Transistors, Self-Aligned Contacts and High Density MIM Capacitors[C]. IEEE VLSI Symposia - Technology, IEEE, Hawaii, USA, 2012: 131-132.
|
[2] |
NARASIMHA S, JAGANNATHAN B, OGINO A, et al. A 7nm CMOS Technology Platform for Mobile and High Performance Compute Application[C]. IEEE International Electron Device Meeting, IEEE, San Francisco, USA, 2012: 29.5.1-29.5.4.
|
[3] |
KUHN K. Considerations for Ultimate CMOS Scaling[J]. IEEE Transactions on Electron Devices, 2012, 59(7):1813-1828.
doi: 10.1109/TED.2012.2193129
|
[4] |
AUTH C, ALIYARUKUNJU A, ASORO M, et al. A 10nm High Performance and Low-Power CMOS Tech-nology Featuring 3rd Generation FinFET Transistors, Self-Aligned Quad Patterning, Contact over Active Gate and Cobalt Local Interconnects[C]. IEEE International Electron Device Meeting, IEEE, San Francisco, USA, 2017: 29.1.1-29.1.4.
|
[5] |
SHULAKER M-M, HILLS G, PATIL N, et al. Carbon Nanotube Computer[J]. Nature, 2013, 501:526-530.
doi: 10.1038/nature12502
|
[6] |
CHEN Z-H., APPENZELLER J, LIN Y-M, et al. An Integrated Logic Circuit Assembled on a Single Carbon Nanotube[J]. Science, 2006, 311(5768):1735-1735.
doi: 10.1126/science.1122797
|
[7] |
PATIL N, LIN A, ZHANG J, et al. Scalable Carbon Nan-otube Computational and Storage Circuits Immune to Metallic and Mispositioned Carbon Nanotubes[J]. IEEE Transactions on Nanotechnology, 2011, 10(4):744-750.
doi: 10.1109/TNANO.2010.2076323
|
[8] |
MEUNIER T, URDAMPILLETA M, NIEGEMANN D, et al. Qubit Read-Out in Semiconductor Quantum Processors: Challenges and Perspectives[C]. IEEE Inter-national Electron Device Meeting, IEEE, San Francisco, USA, 2019: 741-744.
|
[9] |
VELDHORST M, YANG C-H, HWANG J-C-C, et al. A Two-Qubit Logic Gate in Silicon[J]. Nature, 2015, 526:410-414.
doi: 10.1038/nature15263
|
[10] |
KAWAKIMI E, SCARLINO P, WARD D-R, et al. Elect-rical Control of a Long-Lived Spin Qubit in a Si/SiGe Quantum Dot[J]. Nature Nanotechnology, 2014, 9:666-670.
doi: 10.1038/nnano.2014.153
|
[11] |
YAN R-H, OURMAZD A, LEE K-F. Scaling the Si MO-SFET: From Bulk to SOI to Bulk[J]. IEEE Tran-sactions on Electron Devices, 1992, 39(7):1704-1710.
|
[12] |
NAGANO S, TSUKIJI M, ANDO K, et al. Mechanism of Leakage Current Through the Nanoscale SiO2 Layer[J]. Journal of Applied Physics, 1994, 75(7):3530-3535.
doi: 10.1063/1.356116
|
[13] |
ROBERTSON J. High Dielectric Constant Gate Oxides for Metal Oxide Si Transistors[J]. Reports on Progress in Physics, 2006, 69(2):327-396.
doi: 10.1088/0034-4885/69/2/R02
|
[14] |
BUCHANAN D-A. Scaling the Gate Dielectric: Mater-ials, Integration, and Reliability[J]. IBM Journal of Research and Development, 1999, 43(3):245-264.
doi: 10.1147/rd.433.0245
|
[15] |
WONG H., IWAI H. On the Scaling Issues and High-kappa Replacement of Ultrathin Gate Dielectrics for Nan-oscale MOS Transistors[J]. Microelectronic Engineering, 2006, 83(10):1867-1904.
doi: 10.1016/j.mee.2006.01.271
|
[16] |
MISTRY K, ALLEN C, AUTH A, et al. A 45nm Logic Technology with High-k+Metal Gate Transistors, Strai-ned Silicon, 9 Cu Interconnect Layers, 193nm Dry Patt-erning, and 100% Pb-free Packaging[C]. IEEE Inter-national Electron Device Meeting, IEEE, San Francisco, USA, 2007: 247-250.
|
[17] |
ANDO T. Ultimate Scaling of High-k Gate Dielectrics: Higher-k or Interfacial Layer Scavenging[J]. Materials, 2012, 5:478-500.
doi: 10.3390/ma5030478
|
[18] |
TORIUMI., NAKAJIMA Y, KITA K. Opportunity for Phase-Controlled Higher-k HfO[J]. ECS Transactions, 2011, 41(7):125-136.
|
[19] |
MORITA Y, MIGITA S, MIZUBAYASHI W, et al. Extre-mely Scaled (~0.2 nm) Equivalent Oxide Thickness of Higher-k (k=40) HfO2 Gate Stacks Prepared by Atomic Layer Deposition and Oxygen-Controlled Cap Post-Deposition Annealing[J]. Japanese Journal of Applied Physics, 2012, 51(2):02BA04-1-6.
doi: 10.7567/JJAP.51.02BA04
|
[20] |
CHOI Y-K, ASANO K, LINDERT N, et al. Ultrathin-Body SOI MOSFET for Deep-Sub-Tenth Micron Era[J]. IEEE Electron Device Letters, 2000, 21(5):254-255.
doi: 10.1109/55.841313
|
[21] |
ARNAUD F, THEAN A, LIPINSKI M, et al. Compe-titive and Cost Effective High-k Based 28nm CMOS Technology for Low Power Applications[C]. IEEE Inter-national Electron Device Meeting, IEEE, Arlington, USA, 2009: 651-654.
|
[22] |
NARASIMHA S, CHANG P, ORTOLLAND C, et al. 22nm High-Performance SOI Technology Featuring Dual-Embedded Stressors, Epi-Plate High-K Deep-Trench Embedded DRAM and Self-Aligned Via 15LM BEOL[C]. IEEE International Electron Device Meeting, IEEE, San Francisco, USA, 2012: 52-55.
|
[23] |
YEAP G, LIN S-S, CHEN Y-M, et al. 5nm CMOS Produ-ction Technology Platform featuring full-fledged EUV, and High Mobility Channel FinFETs with den-sest 0.021 μm2 SRAM cells for Mobile SoC and High Performance Computing Applications[C]. IEEE International Electron Device Meeting, IEEE, San Francisco, USA, 2019: 879-882.
|
[24] |
JEONG W-C, LEE H-J, LEE T-J, et al. True 7nm Plat-form Technology featuring Smallest FinFET and Smal-lest SRAM cell by EUV, Special Constructs and 3rd Gen-eration Single Diffusion Break[C]. IEEE VLSI Symposia- Technology, IEEE, Hawaii, USA, 2018: 59-60.
|
[25] |
HA D, YANG C, LEE J, et al. Highly Manufacturable 7nm FinFET Technology Featuring EUV Lithography[C]. IEEE VLSI Symposia - Technology, IEEE, Kyoto, Japan, 2017: T68-T69.
|
[26] |
KIM S-H, FOSSUM J-G, TRIVEDI V-P, et al. Bulk Inversion in FinFETs and the Implied Insignificance of the Effective Gate Width[C]. 2004 IEEE International SOI Conference, IEEE, Charleston, USA, 2004: 145-147.
|
[27] |
RYCKAERT J, NA M-H, WECKX P, et al. Enabling Sub-5nm CMOS Technology Scaling: Thinner and Tall-er![C]. IEEE International Electron Device Meeting, IEEE, San Francisco, USA, 2019: 685-688.
|
[28] |
ZHANG J, FROUGIER J, GREENE A, et al. Full Bott-om Dielectric Isolation to Enable Stacked Nanosheet Transistor for Low Power and High Performance Appli-cations[C]. IEEE International Electron Device Meeting, IEEE, San Francisco, USA, 2019: 250-253.
|
[29] |
BAE G, BAE D-I, HWANG S-M, et al. 3nm GAA Technology featuring Multi-Bridge-Channel FET for Low Power and High Performance Applications[C]. IEEE International Electron Device Meeting, IEEE, San Francisco, USA, 2018: 656-659.
|
[30] |
GARCIA BARDON M, SHERAZI Y, JANG D, et al. Power-performance Trade-offs for Lateral NanoSheets on Ultra-Scaled Standard Cells[C]. IEEE VLSI Symposia - Technology, IEEE, Hawaii, USA, 2018: 143-144.
|
[31] |
LOUBET N, KAL S, ALIX C, et al. A Novel Dry Selective Etch of SiGe for the Enablement of High Performance Logic Stacked Gate-All-Around NanoSheet Devices for Low Power and High Performance Applications[C]. IEEE International Electron Device Meeting, IEEE, San Francisco, USA, 2019: 242-245.
|
[32] |
WECKX P, RYCKAERT J, DENTONI LITTA E, et al. Novel Forksheet Device Architecture as Ultimate Logic Scaling Device Towards 2nm[C]. IEEE International Electron Device Meeting, IEEE, San Francisco, USA, 2019: 871-874.
|
[33] |
RACHMADY W, AGRAWAL A, SUNG S-H, et al. 300mm Heterogeneous 3D Integration of Record Per-formance Layer Transfer Germanium PMOS with Sili-con NMOS for Low Power High Performance Logic Applications[C]. IEEE International Electron Device Meeting, IEEE, San Francisco, USA, 2019: 697-700.
|