Frontiers of Data and Computing ›› 2021, Vol. 3 ›› Issue (5): 4-27.
						doi: 10.11871/jfdc.issn.2096-742X.2021.05.001PID:21.86101.2/JFDC.ISSN.2096.742X.2019.01.012
CSTR:32002.14.jfdc.issn.2096.742X.2019.01.012
						
• Special Issue: Problems and Counter measures in the field of In fomation Tellnology in China • Previous Articles Next Articles
					
													XU Haitao1,*( ),PENG Lianmao2,*(
),PENG Lianmao2,*( )
)
												  
						
						
						
					
				
Received:2021-10-01
															
							
															
							
															
							
																	Online:2021-10-20
															
							
																	Published:2021-11-24
															
						Contact:
								XU Haitao,PENG Lianmao   
																	E-mail:htxu@bicic.cn;lmpeng@pku.edu.cn
																					XU Haitao,PENG Lianmao. Carbon-Based Integrated Circuit Technology: Development and Forecast[J]. Frontiers of Data and Computing, 2021, 3(5): 4-27.
| [1] | Cao Q. Carbon nanotube transistor technology for More-Moore scaling[J]. Nano Res. 2021, 14:3051-3069. doi: 10.1007/s12274-021-3459-z | 
| [2] | Ronald G. Dreslinski, Michael Wieckowski, et al. Near threshold computing: overcoming performance degrad-ation from aggressive voltage Scaling[D]. In Proc. ISCA Workshop on Energy-Efficient Design, 2009. | 
| [3] | H.-S. Philip Wong. Carbon Nanotube Digital Nanosy-stems[D]. PKU CNT Workshop, 2015. | 
| [4] | Tathagata Srimani, G. Hills, M.M. Shulaker, et al. Heter-ogeneous integration of BEOL logic and memory in a commercial foundry: multi-tier complementary carbon nanotube logic and resistive RAM at a 130 nm node[J]. VLSI, 2020, 9265083. | 
| [5] | Aaron Franklin. Nanomaterials in transistors: From high-performance to thin-film applications[J]. Science, 2015, 349:6249 | 
| [6] | Frank Schwierz. Graphene transistors[J]. Nat. Nano-technol., 2010, 5:487. | 
| [7] | F Yang et al. Chirality-specific growth of single-wall- ed carbon nanotubes on solid alloy catalysts[J]. Nature, 2014, 510:522-524. doi: 10.1038/nature13434 | 
| [8] | Shuchen Zhang, Zhang Jin, et al. Arrays of horizontal carbon nanotubes of controlled chirality grown using designed catalysts[J]. Nature, 2017, 543:234-238. doi: 10.1038/nature21051 | 
| [9] | Jin S., Dunham S., Song J. et al. Using nanoscale thermocapillary flows to create arrays of purely semicon-ducting single-walled carbon nanotubes[J]. Nature Nanotech., 2013, 8:347-355. doi: 10.1038/nnano.2013.56 | 
| [10] | A. A. Green, M. C. Hersam. Nearly single-chirality single-walled carbon nanotubes produced via orthogonal iterative density gradient ultracentrifugation[J]. Adv. Mater., 2011, 23:2185. doi: 10.1002/adma.v23.19 | 
| [11] | S. Ghosh, S. M. Bachilo, R. B. Weisman. Advanced sorting of single-walled carbon nanotubes by nonlin-ear density-gradient ultracentrifugation[J]. Nat. Nanote-chnol., 2010, 5:443. | 
| [12] | J. A. Fagan, M. Zheng, et al. Isolation of specific small-diameter single-wall carbon nanotube species via aque-ous two-phase extraction[J]. Adv. Mater., 2014, 26:2800. doi: 10.1002/adma.v26.18 | 
| [13] | H. Gui, J. K. Streit, M. Zheng, et al. Redox sorting of carbon nanotubes[J]. Nano Lett., 2015, 15:1642. doi: 10.1021/nl504189p | 
| [14] | Huiliang Wang, Zhenan Bao. Conjugated polymer sorting of semiconducting carbon nanotubes and their electronic applications[J]. Nano Today, 2015, 10:737-758. doi: 10.1016/j.nantod.2015.11.008 | 
| [15] | Qiu S., Li Q. W., et al. Solution-processing of high-purity semiconducting single-walled carbon nanotubes for electronics devices[J]. Adv. Mater., 2019, 31:1800750. doi: 10.1002/adma.v31.9 | 
| [16] | Liyuan Liang, Wanyi Xie, Song Qiu, Qingwen Li, et al. High-efficiency dispersion and sorting of single-walled carbon nanotubes via non-covalent interactions[J]. J. Mater. Chem. C, 2017, 5:11339-11368. doi: 10.1039/C7TC04390B | 
| [17] | Darryl Fong, Alex Adronov. Recent developments in the selective dispersion of single-walled carbon nanotubes using conjugated polymers[J]. Chem. Sci., 2017, 8:7292-7305. doi: 10.1039/c7sc02942j pmid: 29163880 | 
| [18] | Mistry K.S B.A. Larsen, and J.L. Blackburn. High-yield dispersions of large-diameter semiconducting single-walled carbon nanotubes with tunable narrow chirality distributions[J]. ACS Nano, 2013, 7(3):2231-2239. doi: 10.1021/nn305336x pmid: 23379962 | 
| [19] | Gu J.T., J. Han, D. Liu, X.Q. Yu, L.X. Kang, S. Qiu, H.H. Jin, H.B. Li, et al. Solution-processable high-purity semiconducting SWCNTs for large-area fabrication of high-performance thin-film transistors[J]. Small, 2016, 12(36):4993-4999. doi: 10.1002/smll.201600398 | 
| [20] | Liu L, Peng LM. et al. Aligned, high-density semicon-ducting carbon nanotube arrays for high-performance electronics[J]. Science, 2020, 368:850-856. doi: 10.1126/science.aba5980 | 
| [21] | Lei T, Chen X, Pitner G, Wong HS, Bao Z. Removable and recyclable conjugated polymers for highly selective and high-yield dispersion and release of low-cost carbon nanotubes[J]. J. Am. Chem. Soc., 2016, 138(3):802-805. doi: 10.1021/jacs.5b12797 | 
| [22] | Park H., Afzali A., Han SJ. et al. High-density integr-ation of carbon nanotubes via chemical self-assembly[J]. Nature Nanotech., 2012, 7:787-791. doi: 10.1038/nnano.2012.189 | 
| [23] | Sun W, Shen J, Yin P. et al. Precise pitch-scaling of carbon nanotube arrays within three-dimensional DNA nanotrenches[J]. Science, 2020, 368(6493):874-877. doi: 10.1126/science.aaz7440 | 
| [24] | Cao Q., Han Sj., Tulevski G. et al. Arrays of single-walled carbon nanotubes with full surface coverage for high-performance electronics[J]. Nat. Nanotechnol., 2013, 8:180-186. doi: 10.1038/nnano.2012.257 | 
| [25] | Jinkins K. R., Chan J., Jacobberger R. M., Berson A., Arnold M. S. Substrate‐wide confined shear alignment of carbon nanotubes for thin film transistors[J]. Adv. Electron. Mater., 2019, 5:1800593. doi: 10.1002/aelm.v5.2 | 
| [26] | Yongho Joo, Michael S. Arnold, Padma Gopalan et al. Dose-controlled, floating evaporative self-assembly and alignment of semiconducting carbon nanotubes from organic solvents[J]. Langmuir, 2014, 30(12):3460-3466. doi: 10.1021/la500162x pmid: 24580418 | 
| [27] | He X., Gao W., Xie L. et al. Wafer-scale monodomain films of spontaneously aligned single-walled carbon nanotubes[J]. Nat. Nanotechnol., 2016, 11:633-638. doi: 10.1038/nnano.2016.44 | 
| [28] | Katherine R. Jinkins, Padma Gopalan, Michael S. Arnold, et al. Nanotube alignment mechanism in floating evaporative self-assembly[J]. Langmuir, 2017, 33:13407-13414. doi: 10.1021/acs.langmuir.7b02827 pmid: 29058446 | 
| [29] | Shi H., Ding L., Zhong D. et al. Radiofrequency transistors based on aligned carbon nanotube arrays[J]. Nat. Electron. 2021, 4:405-415. doi: 10.1038/s41928-021-00594-w | 
| [30] | Katherine R. Jinkins, Padma Gopalan, Michael S. Arnold, et al. Aligned 2D carbon nanotube liquid crystals for wafer-scale electronics[J]. Sci. Adv., 2021, 7:eabh0640. doi: 10.1126/sciadv.abh0640 | 
| [31] | Javey A., Guo J., Wang Q., Lundstrom M., and Dai H. J. Ballistic carbon nanotube fieldeffect transistors[J]. Nature, 2003, 424:654-657. doi: 10.1038/nature01797 | 
| [32] | Javey A., Wang Q., Kim W., and Dai H. Advancements in complementary carbon nanotube field-effect transistors[J]. IEDM, 2003, 1269387. | 
| [33] | Zhihong Chen, Phaedon Avouris et al. The role of metal-nanotube contact in the performance of carbon nanotube field-effect Ttransistors[J]. Nano Lett., 2005, 5(7):1497-1502. pmid: 16178264 | 
| [34] | Zhang Z, Liang X, Wang S, et al. Doping-free fabrication of carbon nanotube based ballistic CMOS devices and circuits[J]. Nano Lett, 2007, 7:3603-3607. doi: 10.1021/nl0717107 | 
| [35] | Zhiyong Zhang, Lianmao Peng et al. Almost Perfectly Symmetric SWCNT-Based CMOS Devices and Scaling[J]. ACS Nano., 2009, 3(11):3781-3787. doi: 10.1021/nn901079p | 
| [36] | Lee C. S.; Pop E.; Franklin A. D.; Haensch W.; Wong H. S. P. A compact virtual-source model for carbon nanotube FETs in the sub-10-nm regime—Part I: Intrinsic elements[J]. IEEE Trans. Electron Devices, 2015, 62:3061-3069. doi: 10.1109/TED.2015.2457453 | 
| [37] | Chenguang Qiu, Zhiyong Zhang, Lianmao Peng, et al. Scaling carbon nanotube complementary transistors to 5-nm gate lengths[J]. Science, 2017, 355:271-276. doi: 10.1126/science.aaj1628 pmid: 28104886 | 
| [38] | Aaron D, Franklin, Wilfried Haensch et al. Carbon Nanotube Complementary Wrap-Gate Transistors[J]. Nano Lett., 2013, 13:2490-2495. doi: 10.1021/nl400544q pmid: 23638708 | 
| [39] | Franklin A D, Chen Z. Length scaling of carbon nanotube transistors[J]. Nat. Nanotechnol., 2010, 5:858-862 doi: 10.1038/nnano.2010.220 pmid: 21102468 | 
| [40] | Berger H. H. Models for contacts to planar devices[J]. Solid State Electron. 1972, 15:145-158. doi: 10.1016/0038-1101(72)90048-2 | 
| [41] | Solomon P. M. Contact resistance to a one-dimensional quasi-ballistic nanotube/wire[J]. IEEE Electron Device Lett., 2011, 32:246-248. doi: 10.1109/LED.2010.2095821 | 
| [42] | Gregory Pitner, H.-S. Philip Wong, et al. Low-tem-perature side contact to carbon nanotube transistors: resistance distributions down to 10 nm contact length[J]. Nano Lett., 2019, 19:1083-1089. doi: 10.1021/acs.nanolett.8b04370 pmid: 30677297 | 
| [43] | Cao Q.; Han S. J.; Haensch W. et al. End-bonded contacts for carbon nanotube transistors with low, size-independent resistance[J]. Science, 2015, 350:68-72. doi: 10.1126/science.aac8006 | 
| [44] | Tang J. S., Cao Q., Han S. J. et al. Carbon nanotube complementary logic with low-temperature processed end-bonded metal contacts[J]. IEDM, 2016, 7838350. | 
| [45] | Cao Q., Tersoff J., Han S. J. et al. Carbon nanotube tr-ansistors scaled to a 40-nanometer footprint[J]. Science, 2017, 356:1369-1372. doi: 10.1126/science.aan2476 | 
| [46] | Lu Y, Bangsaruntip S, Wang X, et al. DNA function-alization of carbon nanotubes for ultrathin atomic layer deposition of high κ dielectrics for nanotube transistors with 60 mV/Decade switching[J]. J. Am. Chem. Soc., 2006, 128:3518-3519. doi: 10.1021/ja058836v | 
| [47] | Wang Z, Xu H, Zhang Z, et al. Growth and performance of yttrium oxide as an ideal high-κ gate dielectric for carbon-based electronics[J]. Nano Lett., 2010, 10:2024-2030. doi: 10.1021/nl100022u | 
| [48] | G. Pitner, Z. Zhang, Q. Lin, et al. Sub-0.5 nm Interfacial Dielectric Enables Superior Electrostatics: 65 mV/dec Top-Gated Carbon Nanotube FETs at 15 nm Gate Length[J]. IEDM 2020, 9371899. | 
| [49] | Shulaker M M, Hills G, Patil N, et al. Carbon nanotube computer[J]. Nature, 2013, 501:526-530. doi: 10.1038/nature12502 | 
| [50] | Yang Y, Ding L, Peng LM, et al. High-Performance Complementary Transistors and Medium-Scale Integrated Circuits Based on Carbon Nanotube Thin Films[J]. ACS Nano, 2017, 11:4124-4132. doi: 10.1021/acsnano.7b00861 | 
| [51] | Hills G, Lau C, Max M, Shulaker, et al. Modern mic-roprocessor built from complementary carbon nanotube transistors[J]. Nature, 2019, 572:595-602. doi: 10.1038/s41586-019-1493-8 | 
| [52] | Bishop M. D.; Hills G; M.; Shulaker M. M. et al. Fabrication of carbon nanotube field-effect transistors in commercial silicon manufacturing facilities[J]. Nat. Electron., 2020, 3, 492-501. doi: 10.1038/s41928-020-0419-7 | 
| [53] | Shulaker MM, Wong HSP, Mitra S, et al. Monolithic 3D integration of logic and memory: carbon nanotube FETs, resistive RAM, and silicon FETs[J]. IEDM, 2014, 7047120. | 
| [54] | Shulaker M. M., Hills G., Wong H. S. P., et al. Threedi-mensional integration of nanotechnologies for computing and data storage on a single chip[J]. Nature, 2017, 547:74-78. doi: 10.1038/nature22994 | 
| [55] | Wu TF, Li H, Wong HSP, Shulaker MM, Mitra S. et al. Hyperdimensional Computing Exploiting Carbon Nano-tube FETs, Resistive RAM, and Their Monolithic 3D Integration[J]. IEEE J. Solid-State Circuits, 2018, 53:3183-3196. doi: 10.1109/JSSC.2018.2870560 | 
| [56] | T Srimani, G Hills, C Lau, M Shulaker. Monolithic Three-Dimensional Imaging System: Carbon Nanotube Computing Circuitry Integrated Directly Over Silicon Imager[J]. VLSI, 2019, 8776514. | 
| [57] | Zhong D., Zhang Z., Ding L. et al. Gigahertz integrated circuits based on carbon nanotube films[J]. Nat. Electron., 2018, 1:40-45. doi: 10.1038/s41928-017-0003-y | 
| [58] | Tang J., Farmer D.B., Bangsaruntip S. et al. Contact engineering and channel doping for robust carbon nano-tube NFETs[J]. VLSI-TSA, 2017, 7942478. | 
| [59] | Lau C., Srimani T., Bishop M. D., Hills G., Shulaker M. M. Tunable n-type doping of carbon nanotubes through engineered atomic layer deposition HfOx films[J]. ACS Nano, 2018, 12:10924-10931. doi: 10.1021/acsnano.8b04208 | 
| [60] | L. S. Liyanage, H.-S. Philip Wong, et al. VLSI-Compat-ible Carbon Nanotube Doping Technique with Low Work- Function Metal Oxides[J]. Nano Lett., 2014, 14(4):1884-1890. doi: 10.1021/nl404654j | 
| [61] | H.-S. Philip Wong. The Next Technology for 21st Century Computing[J]. PKU CNT Workshop, 2017. | 
| [1] | CHEN Lei,ZHAO Congpeng,GE Jie,ZUO Xuan. Overview of Integrated Circuit Technology and Industry Development Practice and Innovation Development Trend Global [J]. Frontiers of Data and Computing, 2021, 3(5): 55-64. | 
| [2] | YU Li,SHENG Yingjie,XU Jinglong,SUI Xiufeng. A Study on the Bottlenecks Technologies of Integrated Circuit Industry in China from the Patent Analysis Perspective [J]. Frontiers of Data and Computing, 2021, 3(5): 40-54. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||
