[1] |
邹自明, 胡晓彦, 熊森林. 空间科学大数据的机遇与挑战[J]. 中国科学院院刊, 2018, 33(8): 877-883.
|
[2] |
王赤. 空间科学突破的前瞻和中国的贡献[J]. 中国科学院院刊, 2022, 37(8): 1050-1065.
|
[3] |
王赤, 陈志青, 胡连欢, 等. 我国空间环境天/地基监测平台的发展态势和展望[J]. 航天器环境工程, 2021, 38(3): 225-239.
|
[4] |
吴季, 王赤, 范全林. 中国科学院空间科学战略性先导科技专项实施11年回顾与展望[J]. 中国科学院院刊, 2022, 37(8): 1019-1030.
|
[5] |
程学旗, 梅宏, 赵伟, 等. 数据科学与计算智能: 内涵, 范式与机遇[J]. 中国科学院院刊, 2020, 35(12): 1470-1481.
|
[6] |
NASA. SMD Artificial Intelligence (AI) Initiative[EB/OL]. [2023-02-12]. https://science.nasa.gov/open-sci-ence-overview/smd-ai-initiative.
|
[7] |
NITA G, GEORGOULIS M, KITIASHVILI I, et al. Machine learning in heliophysics and space weather fore-casting: a white paper of findings and recommendations[J]. arXiv preprint arXiv:2006. 12224, 2020.
|
[8] |
ESA. Artificial Intelligence Data Analysis[EB/OL]. [2023-02-12]. https://www.esa.int/Enabling_Support/Preparing_for_the_Future/Discovery_and_Preparation/Artificial_intelligence_in_space.
|
[9] |
中华人民共和国科技部、教育部、工业和信息化部、交通运输部、农业农村部、国家卫生健康委. 关于加快场景创新以人工智能高水平应用促进经济高质量发展的指导意见[EB/OL]. [2023-02-12]. http://www.gov.cn/zhengce/zhengceku/2022-08/12/content_5705154.htm.
|
[10] |
CAMPOREALE E, WING S, JOHNSON J. Machine lea-rning techniques for space weather[M]. Cambridge: Else-vier, 2018.
|
[11] |
BORTNIK J, CAMPOREALE E. Ten ways to apply mac-hine learning in the Earth and Space Sciences[C]// AGU Fall Meeting Abstracts, 2021, 2021: IN12A-06.
|
[12] |
HURLBURT N, CHEUNG M, SCHRIJVER C, et al. Heliophysics Event Knowledgebase for the Solar Dyna-mics Observatory (SDO) and Beyond[J]. Solar Physics, 2012, 1(275): 67-78.
|
[13] |
LI X, WANG Y, LIU R, et al. Reconstructing solar wind inhomogeneous structures from stereoscopic observations in white light: Solar wind transients in 3-D[J]. Journal of Geophysical Research: Space Physics, 2020, 125(7): e2019JA027513.
|
[14] |
PAN Y, JIN M, ZHANG S, et al. TEC map completion using DCGAN and Poisson blending[J]. Space Weather, 2020, 18(5): e2019SW002390.
|
[15] |
LI M, CUI Y, LUO B, et al. Knowledge-Informed Deep Neural Networks for Solar Flare Forecasting[J]. Space Weather, 2022, 20(8): e2021SW002985.
|
[16] |
师立勤, 刘四清, 钟秋珍, 等. 基于机器学习相似度算法的Kp指数预报[J]. 空间科学学报, 2022, 42(2): 199-205.
|
[17] |
MANSHOUR P, BALASIS G, CONSOLINI G, et al. Cau-sality and information transfer between the solar wind and the magnetosphere-ionosphere system[J]. Entropy, 2021, 23(4): 390.
doi: 10.3390/e23040390
|
[18] |
YANG Y, SHEN F. Three-Dimensional MHD Modeling of Interplanetary Solar Wind Using Self-Consistent Bou-ndary Condition Obtained from Multiple Observ-ations and Machine Learning[J]. Universe, 2021, 7(10): 371.
doi: 10.3390/universe7100371
|
[19] |
SHIMOJO M, HASHIMOTO T, SHIBATA K, et al. Statistical Study of Solar X-ray Jets Observed with the YOHKOH Soft X-ray Telescope[C]// IAU Colloq. 153:Magnetodynamic Phenomena in the Solar Atmosphere-Prototypes of Stellar Magnetic Activity, 1996: 449.
|
[20] |
LAI C, XU J, YUE J, et al. Automatic extraction of gra-vity waves from all-sky airglow image based on machine learning[J]. Remote Sensing, 2019, 11(13): 1516.
doi: 10.3390/rs11131516
|
[21] |
BURGER B, MAFFETTONE P M, GUSEV V V, et al. A mobile robotic chemist[J]. Nature, 2020, 583 (7815): 237- 241.
doi: 10.1038/s41586-020-2442-2
|
[22] |
TUNYASUVUNAKOOL K, ADLER J, WU Z, et al. Hi-ghly accurate protein structure prediction for the human proteome[J]. Nature, 2021, 596(7873): 590-596.
doi: 10.1038/s41586-021-03828-1
|
[23] |
WU T, TEGMARK M. Toward an artificial intelligence physicist for unsupervised learning[J]. Physical Review E, 2019, 100(3): 033311.
doi: 10.1103/PhysRevE.100.033311
|
[24] |
孙蒙鸽, 韩涛. 科研智能化与知识服务: 内涵, 实现与机遇[J]. 情报理论与实践, 2021, 44(10): 41.
|
[25] |
XU F, USZKOREIT H, DU Y, et al. Explainable AI: A brief survey on history, research areas, approaches and challenges[C]//Natural Language Processing and Chin-ese Computing: 8th CCF International Conference, NL-PCC 2019, Dunhuang, China, October 9-14, 2019, Pro-ceedings, Part II 8. Springer International Publishing, 2019: 563-574.
|
[26] |
KARNIADAKIS G E, KEVREKIDIS I G, LU L, et al. Ph-ysics-informed machine learning[J]. Nature Reviews Ph-ysics, 2021, 3(6): 422-440.
|
[27] |
XU G, DUONG T D, LI Q, et al. Causality learning: A new perspective for interpretable machine learning[J]. arXiv preprint arXiv:2006.16789, 2020.
|
[28] |
JÖHNK J, WEIßERT M, WYRTKI K. Ready or not, AI comes—an interview study of organizational AI readiness factors[J]. Business & Information Systems Engineering, 2021, 63: 5-20.
|
[29] |
LIANG W, TADESSE G A, HO D, et al. Advances, cha-llenges and opportunities in creating data for trustw-orthy AI[J]. Nature Machine Intelligence, 2022, 4(8): 669-677.
doi: 10.1038/s42256-022-00516-1
|
[30] |
MASKEY M, ANSDELL M, COSTES S, et al. NASA Science Mission Directorate Artificial Intelligence Work-shop Update[C]// AGU Fall Meeting Abstracts, 2021: IN11B-01.
|
[31] |
YAO T, WANG J, WAN M, et al. VenusAI: An artificial intelligence platform for scientific discovery on superco-mputers[J]. Journal of Systems Architecture, 2022, 128: 102550.
doi: 10.1016/j.sysarc.2022.102550
|
[32] |
UNESCO. Recommendation on Open Science[EB/OL]. [2023-02-12]. https://unesdoc.unesco.org/ark:/48223/pf0000379949.locale=en.
|