Frontiers of Data and Computing ›› 2024, Vol. 6 ›› Issue (5): 111-125.
CSTR: 32002.14.jfdc.CN10-1649/TP.2024.05.011
doi: 10.11871/jfdc.issn.2096-742X.2024.05.011
Previous Articles Next Articles
ZHENG Siming1,2(),ZHU Mingyu3,YUAN Xin3,YANG Xiaoyu1,2,*(
)
Received:
2023-04-03
Online:
2024-10-20
Published:
2024-10-21
ZHENG Siming, ZHU Mingyu, YUAN Xin, YANG Xiaoyu. Video Snapshot Compressive Imaging Based on Elastic Weight Consolidation[J]. Frontiers of Data and Computing, 2024, 6(5): 111-125, https://cstr.cn/32002.14.jfdc.CN10-1649/TP.2024.05.011.
Table 1
Quantitative comparison of different algorithms in the grayscale SCI system"
数据集 | Kobe | Traffic | Runner | Drop | Aerial | Crash | Average | 运行时间 |
---|---|---|---|---|---|---|---|---|
评价指标 | PSNR SSIM | PSNR SSIM | PSNR SSIM | PSNR SSIM | PSNR SSIM | PSNR SSIM | PSNR SSIM | 秒(s) |
GAP-TV[ | 26.45 0.845 | 20.90 0.715 | 28.48 0.899 | 33.81 0.963 | 25.03 0.828 | 24.82 0.838 | 26.58 0.848 | 4.2 |
E2E-CNN[ | 27.79 0.807 | 24.62 0.840 | 34.12 0.947 | 26.56 0.949 | 27.18 0.869 | 26.43 0.882 | 29.45 0.882 | 0.0312 |
DeSCI[ | 33.25 0.952 | 28.72 0.925 | 38.76 0.969 | 43.22 0.993 | 25.33 0.860 | 27.04 0.909 | 32.72 0.935 | 6180 |
PnP-FFDNet[ | 30.47 0.926 | 24.08 0.833 | 32.88 0.938 | 40.87 0.988 | 24.02 0.814 | 24.32 0.836 | 29.44 0.889 | 3.0 |
PnP-FastDVDNet[ | 32.73 0.946 | 27.95 0.932 | 36.29 0.962 | 41.82 0.989 | 27.98 0.897 | 27.32 0.925 | 32.35 0.942 | 18 |
BIRNAT[ | 32.71 0.950 | 29.33 0.942 | 38.70 0.976 | 42.28 0.992 | 28.99 0.927 | 27.84 0.927 | 33.31 0.951 | 0.16 |
GAP-Unet-S12 | 32.09 0.944 | 28.19 0.929 | 38.12 0.975 | 42.02 0.992 | 28.88 0.914 | 27.83 0.931 | 32.86 0.947 | 0.0072 |
MetaSCI[ | 30.12 0.907 | 26.95 0.888 | 37.02 0.967 | 40.61 0.985 | 28.31 0.904 | 27.33 0.906 | 31.72 0.926 | 0.025 |
RevSCI[ | 33.72 0.957 | 30.03 0.949 | 39.40 0.977 | 42.93 0.992 | 29.35 0.924 | 28.12 0.937 | 33.92 0.956 | 0.19 |
DUN-3DUnet[ | 35.00 0.969 | 31.76 0.966 | 40.90 0.983 | 44.46 0.994 | 30.64 0.943 | 29.35 0.955 | 35.32 0.968 | 1.35 |
ELP-Unfolding[ | 24.41 0.966 | 31.58 0.962 | 41.16 0.986 | 44.99 0.995 | 30.68 0.943 | 29.65 0.960 | 35.41 0.969 | 0.24 |
Ours | 35.48 0.985 | 31.95 0.979 | 41.17 0.994 | 45.12 0.998 | 31.41 0.968 | 30.95 0.978 | 36.02 0.984 | 1.15 |
Table 2
Flexibility of masks: Quantitative comparison of different algorithms with different masks but with the same spatial size. PSNR (dB) and SSIM are chosen as evaluation metrics"
算法 | Ours | DUN-3DUnet | MetaSCI |
---|---|---|---|
评价指标 | PSNR SSIM | PSNR SSIM | PSNR SSIM |
训练中使用掩码 | 36.02 0.985 | 35.26 0.968 | 31.72 0.926 |
新任务1 | 36.01 0.985 | 31.74 0.937 | 31.71 0.926 |
新任务2 | 36.03 0.985 | 31.66 0.937 | 31.68 0.925 |
Table 3
Large-scale data (compression ratio: 8): Quantitative comparison of existing algorithms applicable to large-scale data. The best results are shown in bold, and the second-best results are shown underlined. PSNR (dB) and SSIM are chosen as evaluation metrics"
数据尺寸 | 算法 | Beauty | Bosphorus | HoneyBee | Jockey | ShakeNDry | Average | 运行时间 |
---|---|---|---|---|---|---|---|---|
评价指标 | PSNR SSIM | PSNR SSIM | PSNR SSIM | PSNR SSIM | PSNR SSIM | PSNR SSIM | PSNR SSIM | 秒(s) |
512x512 | GAP-TV[ | 32.13 0.857 | 29.18 0.934 | 31.40 0.887 | 31.01 0.940 | 32.52 0.882 | 31.25 0.900 | 44.67 |
PnP-FFDNet[ | 30.70 0.855 | 35.36 0.952 | 31.94 0.872 | 34.88 0.955 | 30.72 0.875 | 32.72 0.902 | 14.22 | |
MetaSCI[ | 35.10 0.901 | 38.37 0.950 | 34.27 0.913 | 36.45 0.962 | 33.16 0.901 | 35.47 0.925 | 0.12 | |
Ours | 41.32 0.983 | 42.04 0.989 | 43.62 0.991 | 41.57 0.988 | 37.25 0.965 | 41.16 0.983 | 4.67 | |
数据尺寸 | 算法 | Beauty | Bosphorus | HoneyBee | Jockey | ShakeNDry | Average | 测试时间 |
1024x1024 | GAP-TV[ | 33.59 0.852 | 33.27 0.971 | 33.86 0.913 | 27.49 0.948 | 24.39 0.937 | 30.52 0.924 | 178.11 |
PnP-FFDNet[ | 32.36 0.857 | 35.25 0.976 | 32.21 0.902 | 31.87 0.965 | 30.77 0.967 | 32.49 0.933 | 52.47 | |
MetaSCI[ | 35.23 0.929 | 37.15 0.978 | 36.06 0.939 | 33.34 0.973 | 32.68 0.955 | 34.89 0.955 | 0.59 | |
Ours | 40.38 0.979 | 42.15 0.989 | 39.04 0.978 | 40.09 0.989 | 37.53 0.982 | 39.84 0.983 | 19.93 | |
数据尺寸 | 算法 | City | Kids | Lips | RaceNight | RiverBank | Average | 测试时间 |
2048x2048 | GAP-TV[ | 21.27 0.902 | 26.05 0.956 | 26.46 0.890 | 26.81 0.875 | 27.74 0.848 | 25.67 0.894 | 764.75 |
PnP-FFDNet[ | 29.31 0.926 | 30.01 0.966 | 27.99 0.902 | 31.18 0.891 | 30.38 0.888 | 29.77 0.915 | 205.62 | |
MetaSCI[ | 32.63 0.930 | 32.31 0.965 | 30.90 0.895 | 33.86 0.893 | 32.77 0.902 | 32.49 0.917 | 2.38 | |
Ours | 40.07 0.982 | 40.15 0.984 | 35.55 0.934 | 36.53 0.956 | 36.80 0.970 | 37.82 0.965 | 79.71 |
Table 5
Quantization results comparison of our model at different compression ratios. PSNR (dB) and SSIM are chosen as evaluation metrics"
压缩比 | 8 | 16 | 24 | 32 | 平均值 |
---|---|---|---|---|---|
评价指标 | PSNR SSIM | PSNR SSIM | PSNR SSIM | PSNR SSIM | PSNR SSIM |
压缩比为8的模型 | 36.02 0.985 | 23.38 0.847 | 21.30 0.785 | 20.16 0.747 | 25.22 0.841 |
引入EWC的模型 | 31.64 0.964 | 30.84 0.955 | 30.81 0.950 | 30.06 0.940 | 30.83 0.952 |
压缩比为32的模型 | 30.13 0.955 | 30.52 0.952 | 30.64 0.948 | 30.01 0.939 | 30.32 0.948 |
[1] |
LLULL P, LIAO X, YUAN X, et al. Coded aperture compressive temporal imaging[J]. Optics express, 2013, 21(9): 10526-10545.
doi: 10.1364/OE.21.010526 pmid: 23669910 |
[2] | YUAN X, LLULL P, LIAO X, et al. Low-cost compressive sensing for color video and depth[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014: 3318-3325. |
[3] | HITOMI Y, GU J, GUPTA M, et al. Video from a single coded exposure photograph using a learned over-complete dictionary[C]. Proceedings of the 2011 International Conference on Computer Vision, 2011: 287-294. |
[4] | REDDY D, VEERARAGHAVAN A, CHELLAPPA R. P2C2: Programmable pixel compressive camera for high speed imaging[C]. Proceedings of the CVPR 2011, 2011: 329-336. |
[5] | LIU Y, YUAN X, SUO J, et al. Rank minimization for snapshot compressive imaging[J]. IEEE transactions on pattern analysis and machine intelligence, 2018, 41(12): 2990-3006. |
[6] | CHENG Z, CHEN B, LIU G, et al. Memory-efficient network for large-scale video compressive sensing[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 16246-16255. |
[7] | YUAN X, BRADY D J, KATSAGGELOS A K. Snapshot compressive imaging: Theory, algorithms, and applications[J]. IEEE Signal Processing Magazine, 2021, 38(2): 65-88. |
[8] | QIAO M, MENG Z, MA J, et al. Deep learning for video compressive sensing[J]. Apl Photonics, 2020, 5(3): 030801. |
[9] | WANG Z, ZHANG H, CHENG Z, et al. Metasci: Scalable and adaptive reconstruction for video compressive sensing[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 2083-2092. |
[10] | CHENG Z, LU R, WANG Z, et al. BIRNAT: Bidirectional recurrent neural networks with adversarial training for video snapshot compressive imaging[C]. Proceedings of the Computer Vision-ECCV 2020, 2020: 258-275. |
[11] | SUN J, LI H, XU Z. Deep ADMM-Net for compressive sensing MRI[J]. Advances in neural information processing systems, 2016, 29. |
[12] | YANG Y, SUN J, LI H, et al. ADMM-CSNet: A deep learning approach for image compressive sensing[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 42(3): 521-538. |
[13] | WU Z, ZHANG J, MOU C. Dense deep unfolding network with 3d-cnn prior for snapshot compressive imaging[C]. Proceedings of the IEEE International Conference on Computer Vision, 2021: 4892-4901. |
[14] | LI Y, QI M, GULVE R, et al. End-to-end video compressive sensing using anderson-accelerated unrolled networks[C]. Proceedings of the 2020 IEEE International Conference on Computational Photography (ICCP), 2020: 1-12. |
[15] | ZHANG J, GHANEM B. ISTA-Net: Interpretable optimization-inspired deep network for image compressive sensing[C]. Proceedings of the IEEE conference on computer vision and pattern recognition, 2018: 1828-1837. |
[16] | YUAN X. Generalized alternating projection based total variation minimization for compressive sensing[C]. Proceedings of the 2016 IEEE International conference on image processing (ICIP), 2016: 2539-2543. |
[17] | YUAN X, LIU Y, SUO J, et al. Plug-and-play algorithms for large-scale snapshot compressive imaging[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 1447-1457. |
[18] | YANG J, LIAO X, YUAN X, et al. Compressive sensing by learning a Gaussian mixture model from measurements[J]. IEEE Transactions on Image Processing, 2014, 24(1): 106-119. |
[19] |
YANG J, YUAN X, LIAO X, et al. Video compressive sensing using Gaussian mixture models[J]. IEEE Transactions on Image Processing, 2014, 23(11): 4863-4878.
doi: 10.1109/TIP.2014.2344294 pmid: 25095253 |
[20] | SHMELKOV K, SCHMID C, ALAHARI K. Incremental learning of object detectors without catastrophic forgetting[C]. Proceedings of the IEEE international conference on computer vision, 2017: 3400-3409. |
[21] | CASTRO F M, MARíN-JIMéNEZ M J, GUIL N, et al. End-to-end incremental learning[C]. Proceedings of the European conference on computer vision (ECCV), 2018: 233-248. |
[22] | RANNEN A, ALJUNDI R, BLASCHKO M B, et al. Encoder based lifelong learning[C]. Proceedings of the IEEE International Conference on Computer Vision, 2017: 1320-1328. |
[23] | GUO Y, HU W, ZHAO D, et al. Adaptive orthogonal projection for batch and online continual learning[C]. Proceedings of the Proceedings of the AAAI Conference on Artificial Intelligence, 2022: 6783-6791. |
[24] | ALJUNDI R, CHAKRAVARTY P, TUYTELAARS T. Expert gate: Lifelong learning with a network of experts[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 3366-3375. |
[25] | ZHAI M, CHEN L, TUNG F, et al. Lifelong gan: Continual learning for conditional image generation[C]. Proceedings of the IEEE/CVF international conference on computer vision, 2019: 2759-2768. |
[26] | WU C, HERRANZ L, LIU X, et al. Memory replay gans: Learning to generate new categories without forgetting[J]. Advances in Neural Information Processing Systems, 2018, 31. |
[27] | KIRKPATRICK J, PASCANU R, RABINOWITZ N, et al. Overcoming catastrophic forgetting in neural networks[J]. Proceedings of the national academy of sciences, 2017, 114(13): 3521-3526. |
[28] | DE LANGE M, ALJUNDI R, MASANA M, et al. A continual learning survey: Defying forgetting in classification tasks[J]. IEEE transactions on pattern analysis and machine intelligence, 2021, 44(7): 3366-3385. |
[29] | LEE S-W, KIM J-H, JUN J, et al. Overcoming catastrophic forgetting by incremental moment matching[J]. Advances in neural information processing systems, 2017, 30. |
[30] | LIU X, MASANA M, HERRANZ L, et al. Rotate your networks: Better weight consolidation and less catastrophic forgetting[C]. Proceedings of the 2018 24th International Conference on Pattern Recognition (ICPR), 2018: 2262-2268. |
[31] | ZENKE F, POOLE B, GANGULI S. Continual learning through synaptic intelligence[C]. Proceedings of the International conference on machine learning, 2017: 3987-3995. |
[32] | HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]. Proceedings of the IEEE conference on computer vision and pattern recognition, 2016: 770-778. |
[33] | HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]; Proceedings of the IEEE conference on computer vision and pattern recognition, 2017: 4700-4708. |
[34] | KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90. |
[35] | LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324. |
[36] | RONNEBERGER O, FISCHER P, BROX T. U-net: Convolutional networks for biomedical image segmentation[C]. Proceedings of the Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015, 2015: 234-241. |
[37] | JI S, XU W, YANG M, et al. 3D convolutional neural networks for human action recognition[J]. IEEE transactions on pattern analysis and machine intelligence, 2012, 35(1): 221-231. |
[38] | TAYLOR G W, FERGUS R, LECUN Y, et al. Convolutional learning of spatio-temporal features[C]. Proceedings of the Computer Vision-ECCV 2010, 2010: 140-153. |
[39] | SHOU Z, WANG D, CHANG S-F. Temporal action localization in untrimmed videos via multi-stage cnns[C]. Proceedings of the IEEE conference on computer vision and pattern recognition, 2016: 1049-1058. |
[40] | PAN Y, MEI T, YAO T, et al. Jointly modeling embedding and translation to bridge video and language[C]. Proceedings of the IEEE conference on computer vision and pattern recognition, 2016: 4594-4602. |
[41] | MOLCHANOV P, YANG X, GUPTA S, et al. Online detection and classification of dynamic hand gestures with recurrent 3d convolutional neural network[C]. Proceedings of the IEEE conference on computer vision and pattern recognition, 2016: 4207-4215. |
[42] | TRAN D, BOURDEV L, FERGUS R, et al. Learning spatiotemporal features with 3d convolutional networks[C]. Proceedings of the IEEE international conference on computer vision, 2015: 4489-4497. |
[43] | TRAN D, WANG H, TORRESANI L, et al. A closer look at spatiotemporal convolutions for action recognition[C]. Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, 2018: 6450-6459. |
[44] | WANG X, GIRSHICK R, GUPTA A, et al. Non-local neural networks[C]. Proceedings of the IEEE conference on computer vision and pattern recognition, 2018: 7794-7803. |
[45] | YIN M, YAO Z, CAO Y, et al. Disentangled non-local neural networks[C]. Proceedings of the Computer Vision-ECCV 2020, 2020: 191-207. |
[46] | HAN K, XIAO A, WU E, et al. Transformer in transformer[J]. Advances in Neural Information Processing Systems, 2021, 34: 15908-15919. |
[47] | TOUVRON H, CORD M, DOUZE M, et al. Training data-efficient image transformers & distillation through attention[C]. Proceedings of the International conference on machine learning, 2021: 10347-10357. |
[48] | WANG W, XIE E, LI X, et al. Pyramid vision transformer: A versatile backbone for dense prediction without convolutions[C]. Proceedings of the IEEE/CVF international conference on computer vision, 2021: 568-578. |
[49] | YUAN L, CHEN Y, WANG T, et al. Tokens-to-token vit: Training vision transformers from scratch on imagenet[C]. Proceedings of the IEEE/CVF international conference on computer vision, 2021: 558-567. |
[50] | LIU Z, LIN Y, CAO Y, et al. Swin transformer: Hierarchical vision transformer using shifted windows[C]. Proceedings of the IEEE/CVF international conference on computer vision, 2021: 10012-10022. |
[51] | LIU Z, NING J, CAO Y, et al. Video swin transformer[C]. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2022: 3202-3211. |
[52] | BERTASIUS G, WANG H, TORRESANI L. Is space-time attention all you need for video understanding?[C]. Proceedings of the ICML, 2021: 4. |
[53] | YANG C, ZHANG S, YUAN X. Ensemble learning priors driven deep unfolding for scalable video snapshot compressive imaging[C]. Proceedings of the Computer Vision-ECCV 2022, 2022: 600-618. |
[54] | LIAO X, LI H, CARIN L. Generalized alternating projection for weighted-2,1 minimization with applications to model-based compressive sensing[J]. SIAM Journal on Imaging Sciences, 2014, 7(2): 797-823. |
[55] | PASZKE A, GROSS S, MASSA F, et al. Pytorch: An imperative style, high-performance deep learning library[J]. Advances in Neural Information Processing Systems, 2019, 32. |
[56] |
WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612.
doi: 10.1109/tip.2003.819861 pmid: 15376593 |
[1] | YAN Zhiyu, RU Yiwei, SUN Fupeng, SUN Zhenan. Research on Video Behavior Recognition Method with Active Perception Mechanism [J]. Frontiers of Data and Computing, 2024, 6(5): 66-79. |
[2] | SONG Heng, HU Nan, GENG Tianbao, CHENG Weiguo, ZHANG Huan. Research on Intelligent Interpretation Method of Shock Elastic Wave Detection Signal of Grouting Compactness [J]. Frontiers of Data and Computing, 2024, 6(4): 163-172. |
[3] | GUO Guanchen, LI Jun, CAI Chengfei, JIAO Yiping, XU Jun. Causal Restraint Transformer for Medical Image Segmentation [J]. Frontiers of Data and Computing, 2024, 6(2): 89-100. |
[4] | CHEN Dong, LI Ming, CHEN Shuwen. Hyperspectral Image Classification Method Combining Transformer and Multi-Layer Feature Aggregation [J]. Frontiers of Data and Computing, 2023, 5(3): 138-151. |
[5] | LIU Qiwei,LI Jun,GU Beibei,ZHAO Zefang. TSAIE: Text Sentiment Analysis Model Based on Image Enhancement [J]. Frontiers of Data and Computing, 2022, 4(3): 131-140. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||