[1] |
MARDIS E R. A Decade’s perspective on DNA sequencing technology[J]. Nature, 2011, 470(7333): 198-203.
|
[2] |
翟俊斌, 曹小利, 沈瀚. 全基因组测序技术的发展及其在临床微生物实验室的应用前景[J]. 检验医学与临床, 2018, 15(3): 414-417.
|
[3] |
沈应博, 史晓敏, 沈建忠, 等. 全基因组测序与生物信息学分析在细菌耐药性研究中的应用[J]. 生物工程学报, 2019, 35(4): 541-557.
|
[4] |
COCK P J A, FIELDS C J, GOTO N, et al. The sanger FASTQ file format for sequences with quality scores, and the Solexa/Illumina FASTQ variants[J]. Nucleic Acids Research, 2009, 38(6): 1767-1771.
|
[5] |
JAJOU R, KOHL T A, WALKER T, et al. Towards standardisation: Comparison of five whole genome sequencing (WGS) analysis pipelines for detection of epidemiologically linked tuberculosis cases[J]. Eurosurveillance, 2019, 24(50): 1900130.
|
[6] |
CHALLIS D, YU J, EVANI U S, et al. An integrative variant analysis suite for whole exome next-generation sequencing data[J]. BMC Bioinformatics, 2012, 13(1): 8.
|
[7] |
LANGMEAD B, SALZBERG S L. Fast gapped-read alignment with Bowtie 2[J]. Nature Methods, 2012, 9(4): 357-359.
doi: 10.1038/nmeth.1923
pmid: 22388286
|
[8] |
LANGMEAD B. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome[J]. Genome biology, 2009, 10(3): 1-10.
|
[9] |
DOBIN A, DAVIS C A, SCHLESINGER F, et al. STAR: ultrafast universal RNA-seq aligner[J]. Bioinformatics, 2013, 29(1): 15-21.
doi: 10.1093/bioinformatics/bts635
pmid: 23104886
|
[10] |
SHENDURE J, JI H. Next-generation DNA sequencing[J]. Nature Biotechnology, 2008, 26(10): 1135-1145.
doi: 10.1038/nbt1486
pmid: 18846087
|
[11] |
PATEL R K, JAIN M. NGS QC Toolkit: A Toolkit for Quality Control of Next Generation Sequencing Data[J]. PLOS ONE, 2012, 7(2): e30619.
|
[12] |
GUO Y, YE F, SHENG Q, et al. Three-stage quality control strategies for DNA re-sequencing data[J]. Briefings in Bioinformatics, 2013, 15(6): 879-889.
|
[13] |
LIU Q, SHENG Q, PING J, et al. scRNABatchQC: multi-samples quality control for single cell RNA-seq data[J]. Bioinformatics, 2019, 35(24): 5306-5308.
doi: 10.1093/bioinformatics/btz601
pmid: 31373345
|
[14] |
CHEN Y, CHEN Y, SHI C, et al. SOAPnuke: a MapReduce acceleration-supported software for integrated quality control and preprocessing of high-throughput sequencing data[J]. GigaScience, 2017, 7(1): 1-6.
|
[15] |
BOLGER A M, LOHSE M, USADEL B. Trimmomatic: a flexible trimmer for Illumina sequence data[J]. Bioinformatics, 2014, 30(15): 2114-2120.
doi: 10.1093/bioinformatics/btu170
pmid: 24695404
|
[16] |
COX M P, PETERSON D A, BIGGS P J. SolexaQA: At-a-glance quality assessment of Illumina second-generation sequencing data[J]. BMC Bioinformatics, 2010, 11(1): 485.
|
[17] |
MARTIN M. Cutadapt removes adapter sequences from high-throughput sequencing reads[J]. EMBnet.Journal, 2011, 17(1): 10-12.
|
[18] |
MCKENNA A, HANNA M, BANKS E, et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data[J]. Genome Research, 2010, 20(9): 1297-1303.
doi: 10.1101/gr.107524.110
pmid: 20644199
|
[19] |
LI H, DURBIN R. Fast and accurate long-read alignment with Burrows-Wheeler transform[J]. Bioinformatics, 2010, 26(5): 589-595.
doi: 10.1093/bioinformatics/btp698
pmid: 20080505
|
[20] |
LANGMEAD B. Aligning short sequencing reads with Bowtie[J]. Current Protocols in Bioinformatics, 2010, 32(1): 11.7. 1-11.7. 14.
|
[21] |
PEARSON W R. Searching protein sequence libraries: Comparison of the sensitivity and selectivity of the Smith-Waterman and FASTA algorithms[J]. Genomics, 1991, 11(3): 635-650.
doi: 10.1016/0888-7543(91)90071-l
pmid: 1774068
|
[22] |
ZOOK J M, SAMAROV D, MCDANIEL J, et al. Synthetic Spike-in Standards Improve Run-Specific Systematic Error Analysis for DNA and RNA Sequencing[J]. PLOS ONE, 2012, 7(7): e41356.
|
[23] |
BAO R, HERNANDEZ K, HUANG L, et al. ExScalibur: A High-Performance Cloud-Enabled Suite for Whole Exome Germline and Somatic Mutation Identification[J]. PLOS ONE, 2015, 10(8): e0135800.
|
[24] |
LEFOUILI M, NAM K. The evaluation of Bcftools mpileup and GATK HaplotypeCaller for variant calling in non-human species[J]. Scientific Reports, 2022, 12(1): 11331.
doi: 10.1038/s41598-022-15563-2
pmid: 35790846
|
[25] |
闫瑾, 潘琦, 任红. 全外显子组测序分析中预处理方法和变异识别方法的比较[J]. 重庆医科大学学报, 2013, 38(12): 1397-1404.
|
[26] |
KALLIO M A, TUIMALA J T, HUPPONEN T, et al. Chipster: user-friendly analysis software for microarray and other high-throughput data[J]. BMC Genomics, 2011, 12(1): 507.
|
[27] |
SHERRY S T, WARD M-H, KHOLODOV M, et al. dbSNP: the NCBI database of genetic variation[J]. Nucleic Acids Research, 2001, 29(1): 308-311.
doi: 10.1093/nar/29.1.308
pmid: 11125122
|
[28] |
LANDRUM M J, LEE J M, BENSON M, et al. ClinVar: public archive of interpretations of clinically relevant variants[J]. Nucleic Acids Research, 2015, 44(D1): D862-D868.
|
[29] |
BIRNEY E, ANDREWS T D, BEVAN P, et al. An overview of Ensembl[J]. Genome research, 2004, 14(5): 925-928.
doi: 10.1101/gr.1860604
pmid: 15078858
|
[30] |
KARCZEWSKI K, FRANCIOLI L. The genome aggregation database (gnomAD)[J]. Genome Research, 2017, 14(1): 925-928.
|
[31] |
JAY R, MASHL, ADAM D, et al. GenomeVIP: a cloud platform for genomic variant discovery and interpretation[J]. Genome research, 2017, 27(8): 1450-1459.
doi: 10.1101/gr.211656.116
pmid: 28522612
|
[32] |
HUI Y, KAI W. Genomic variant annotation and prioritization with ANNOVAR and wANNOVAR[J]. Nature protocols, 2018, 10(10): 1556-1566.
|
[33] |
RAMOS A H, LICHTENSTEIN L, GUPTA M, et al. Oncotator: Cancer Variant Annotation Tool[J]. Human Mutation, 2015, 36(4): E2423-E2429.
|
[34] |
GOECKS J, NEKRUTENKO A, TAYLOR J. Gal-axy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences[J]. Genome Biology, 2010, 11(8): R86.
|