[1] |
MIGHAN S N, KAHANI M. A novel scalable intrusion detection system based on deep learning[J]. International Journal of Information Security, 2021, 20: 387-403.
doi: 10.1007/s10207-020-00508-5
|
[2] |
WANG Z, LIU Y, HE D, et al. Intrusion detection methods based on integrated deep learning model[J]. Computers & Security, 2021, 103: 102177.
doi: 10.1016/j.cose.2021.102177
|
[3] |
JIANG W. Graph-based deep learning for communication networks: A survey[J]. Computer Communications, 2022, 185: 40-54.
doi: 10.1016/j.comcom.2021.12.015
|
[4] |
LO W W, LAYEGHY S, SARHAN M, et al. E-graphsage: A graph neural network based intrusion detection system for iot[C]// NOMS 2022-2022 IEEE/IFIP Network Operations and Management Symposium. IEEE, 2022: 1-9.
|
[5] |
CAVILLE E, LO W W, LAYEGHY S, et al. Anomal-E: A self-supervised network intrusion detection system based on graph neural networks[J]. Knowledge-Based Systems, 2022, 258: 110030.
doi: 10.1016/j.knosys.2022.110030
|
[6] |
王振东, 徐振宇, 李大海, 等. 面向入侵检测的元图神经网络构建与分析[J/OL]. 自动化学报: 1-24[2023-04-01].
|
[7] |
郭嘉琰, 李荣华, 张岩, 等. 基于图神经网络的动态网络异常检测算法[J]. 软件学报, 2020, 31(3):748-762.
|
[8] |
HEI Y, YANG R, PENG H, et al. Hawk: Rapid android malware detection through heterogeneous graph attention networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021.
|
[9] |
LI Y, LI R, ZHOU Z, et al. GraphDDoS: Effective DDoS Attack Detection Using Graph Neural Networks[C]// 2022 IEEE 25th International Conference on Computer Supported Cooperative Work in Design (CSCWD). IEEE, 2022: 1275-1280.
|
[10] |
CHANG L, BRANCO P. Graph-based solutions with residuals for intrusion detection: The modified e-graphsage and e-resgat algorithms[J]. arXiv preprint arXiv:2111.13597, 2021.
|
[11] |
PUJOL-PERICH D, SUAREZ-VARELA J, CABELLOS-APARICIO A, et al. Unveiling the potential of graph neural networks for robust intrusion detection[J]. ACM SIGMETRICS Performance Evaluation Review, 2022, 49(4): 111-117.
doi: 10.1145/3543146.3543171
|
[12] |
SCARSELLI F M. GORI M, TSOI A C, et al. The Graph Neural Network Model[J]. IEEE Transactions on Neural Networks, 2008, 20(1): 61-80.
doi: 10.1109/TNN.2008.2005605
|
[13] |
VELICKOVIC P, CUCURULL G, CASANOVA A, et al. Graph attention networks[J]. Stat, 2017, 1050: 20.
|
[14] |
BRODY S, ALON U, YAHAV E. How attentive are graph attention networks?[J]. arXiv preprint arXiv:2105.14491, 2021.
|
[15] |
MOUSTAFA N, SLAY J. UNSW-NB15: a comprehensive data set for network intrusion detection systems (UNSW-NB15 network data set)[C]// 2015 military communications and information systems conference (MilCIS). IEEE, 2015: 1-6.
|
[16] |
MOUSTAFA N. A new distributed architecture for evaluating AI-based security systems at the edge: Network TON_IoT datasets[J]. Sustainable Cities and Society, 2021, 72: 102994.
doi: 10.1016/j.scs.2021.102994
|
[17] |
MASEER Z K, YUSOF R, BAHAMAN N, et al. Benchmarking of machine learning for anomaly based intrusion detection systems in the CICIDS2017 dataset[J]. IEEE ACCESS, 2021, 9: 22351-22370.
doi: 10.1109/Access.6287639
|