Frontiers of Data and Computing ›› 2024, Vol. 6 ›› Issue (1): 162-178.
CSTR: 32002.14.jfdc.CN10-1649/TP.2024.01.015
doi: 10.11871/jfdc.issn.2096-742X.2024.01.015
• Technology and Application • Previous Articles Next Articles
DU Guanyao1(),GUO Yongjie1,2,LONG Chun1,*(),ZHAO Jing1,WAN Wei1
Received:
2023-08-01
Online:
2024-02-20
Published:
2024-02-21
DU Guanyao, GUO Yongjie, LONG Chun, ZHAO Jing, WAN Wei. A Review of Concept Drift in the Field of Network Anomaly Detection[J]. Frontiers of Data and Computing, 2024, 6(1): 162-178, https://cstr.cn/32002.14.jfdc.CN10-1649/TP.2024.01.015.
Table 1
Summary of concept drift detection methods"
使用方法 | 发表年份 | 参献 | 算法名称 | 漂移类型 | 是否主动检测概念漂移 | 模型如何更新 |
---|---|---|---|---|---|---|
基于统计的方法 | 2017[ | 21 | LDD | 突变漂移 | 是 | 自动 |
2009[ | 23 | Meta-ADD | 所有类型 | 否 | 不更新 | |
2007[ | 9 | STEPD | 所有类型 | 是 | 不更新 | |
2004[ | 48 | EI-KMeans | 突变漂移、渐增漂移 | 是 | 自动 | |
2019[ | 35 | DDM | 所有类型 | 否 | 不更新 | |
2010[ | 14 | KL divergence | 所有类型 | 是 | 不更新 | |
基于预测的方法 | 2011[ | 31 | OLINDDA | 渐进漂移 | 是 | 自动 |
2011[ | 11 | ECSMiner | 所有类型 | 是 | 不更新 | |
2021[ | 33 | GMM | 所有类型 | 是 | 自动更新 | |
2022[ | 39 | DRPM | 所有类型 | 是 | 不更新 | |
基于滑动窗口的方法 | 2018[ | 56 | NN-DVI | 所有类型 | 是 | 自动 |
2012[ | 25 | EWMA | 渐进漂移 | 是 | 自动 | |
2012[ | 86 | CVFDT | 突变漂移、渐增漂移、复发式漂移 | 是 | 不更新 | |
基于聚类的方法 | 2015[ | 15 | DDM | 突变漂移、渐增漂移、渐进漂移 | 是 | 不更新 |
2022[ | 58 | ProM | 所有类型 | 是 | 自动 | |
2008[ | 29 | PAM | 突变漂移、渐增漂移 | 是 | 不更新 | |
基于深度学习的方法 | 2011[ | 63 | Learn++.NSE | 突变漂移、渐增漂移、渐进漂移 | 否 | 自动 |
2020[ | 59 | OS-ELMs | 所有类型 | 是 | 自动 |
[1] | LU J, LIU A, DONG F, et al. Learning under Concept Drift: A Review[J]. IEEE Transactions on Knowledge and Data Engineering, 2020: 1. |
[2] | LIMA M, FILHO T S, DE A, et al. A Comparative Study on Concept Drift Detectors for Regression[Z]. 2021. |
[3] | TSYMBAL A. The Problem of Concept Drift: Definitions and Related Work[R]. Technical Report Department of Computer Science Trinity College Dublin, 2004. |
[4] | ZLIOBAITE I, PECHENIZKIY M, GAMA J. An overview of concept drift applications[J]. In Big Data Analysis: New Algorithms for a New Society, 2016, 16: 91-114. |
[5] | ZAMBON D, ALIPPI C, LIVI L. Concept Drift and Anomaly Detection in Graph Streams[J]. IEEE Transactions on Neural Networks & Learning Systems, 2017(99): 1-14. |
[6] | YUAN L, LI H, XIA B, et al. Recent Advances in Concept Drift Adaptation Methods for Deep Learning[C]// Proceedings of the 31st International Joint Conference on Artificial Intelligence. Vienna, Austria: International Joint Conferences on Artificial Intelligence Organization, 2022: 5654-5661. |
[7] |
GONÇALVES JR P M, DE CARVALHO SANTOS S G T, BARROS R S M, et al. A comparative study on concept drift detectors[J]. Expert Systems with Applications, 2014, 41(18): 8144-8156.
doi: 10.1016/j.eswa.2014.07.019 |
[8] | WANG S, MINKU L L, GHEZZI D, et al. Concept drift detection for online class imbalance learning[C]// The 2013 International Joint Conference on Neural Networks (IJCNN). IEEE, 2013: 1-10. |
[9] |
MINKU L L, WHITE A P, YAO X. The impact of diversity on online ensemble learning in the presence of concept drift[J]. IEEE Transactions on knowledge and Data Engineering, 2009, 22(5): 730-742.
doi: 10.1109/TKDE.2009.156 |
[10] |
LECHNER A, KECKEIS H, HUMPHRIES P. Patterns and processes in the drift of early developmental stages of fish in rivers: a review[J]. Reviews in Fish Biology and Fisheries, 2016, 26: 471-489.
doi: 10.1007/s11160-016-9437-y |
[11] | DIEHL S, ANDERSON K E, NISBET R M. Population responses of drifting stream invertebrates to spatial environmental variability: an emerging conceptual framework[M]// Aquatic insects: challenges to populations. Wallingford UK: CABI, 2008: 158-183. |
[12] | COHEN A M, BHUPATIRAJU R T, HERSH W R. Feature generation, feature selection, classifiers, and conceptual drift for biomedical document triage[C]// TREC. 2004. |
[13] |
BAYRAM F, AHMED B S, KASSLER A. From concept drift to model degradation: An overview on performance-aware drift detectors[J]. Knowledge-Based Systems, 2022, 245: 108632.
doi: 10.1016/j.knosys.2022.108632 |
[14] |
LIMA M, Neto M, FILHO T S, et al. Learning Under Concept Drift for Regression—A Systematic Literature Review[J]. IEEE Access, 2022, 10: 45410-45429.
doi: 10.1109/ACCESS.2022.3169785 |
[15] |
ALKAYEM N F, CAO M, ZHANG Y, et al. Structural damage detection using finite element model updating with evolutionary algorithms: a survey[J]. Neural Computing and Applications, 2018, 30: 389-411.
doi: 10.1007/s00521-017-3284-1 |
[16] |
BAYRAM F, AHMED B S, Kassler A. From concept drift to model degradation: An overview on performance-aware drift detectors[J]. Knowledge-Based Systems, 2022, 245: 108632.
doi: 10.1016/j.knosys.2022.108632 |
[17] |
WANG S, SCHLOBACH S, KLEIN M. Concept drift and how to identify it[J]. Journal of Web Semantics, 2011, 9(3): 247-265.
doi: 10.1016/j.websem.2011.05.003 |
[18] | KORYCKI Ł, KRAWCZYK B. Concept drift detection from multi-class imbalanced data streams[C]// 2021 IEEE 37th International Conference on Data Engineering (ICDE). IEEE, 2021: 1068-1079. |
[19] |
DRIES A, RÜCKERT U. Adaptive concept drift detection[J]. Statistical Analysis and Data Mining: The ASA Data Science Journal, 2009, 2(5-6): 311-327.
doi: 10.1002/sam.v2:5/6 |
[20] | LIU A, SONG Y, ZHANG G, et al. Regional concept drift detection and density synchronized drift adaptation[C]// IJCAI International Joint Conference on Artificial Intelligence. 2017. |
[21] |
BAIDARI I, HONNIKOLL N. Bhattacharyya distance based concept drift detection method for evolving data stream[J]. Expert Systems with Applications, 2021, 183: 115303.
doi: 10.1016/j.eswa.2021.115303 |
[22] | NISHIDA K, YAMAUCHI K. Detecting concept drift using statistical testing[C]// International conference on discovery science. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007: 264-269. |
[23] |
LIU A, LU J, ZHANG G. Concept drift detection via equal intensity k-means space partitioning[J]. IEEE transactions on cybernetics, 2020, 51(6): 3198-3211.
doi: 10.1109/TCYB.2020.2983962 |
[24] | KABIR M A, KEUNG J W, BENNIN K E, et al. Assessing the significant impact of concept drift in software defect prediction[C]// 2019 IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC). IEEE, 2019, 1: 53-58. |
[25] |
WANG X, KANG Q, AN J, et al. Drifted Twitter spam classification using multiscale detection test on KL divergence[J]. IEEE Access, 2019, 7: 108384-108394.
doi: 10.1109/Access.6287639 |
[26] | HAYAT M Z, BASIRI J, SEYEDHOSSEIN L, et al. Content-based concept drift detection for email spam filtering[C]// 2010 5th International Symposium on Telecommunications. IEEE, 2010: 531-536. |
[27] |
GOLDENBERG I, WEBB G I. Survey of distance measures for quantifying concept drift and shift in numeric data[J]. Knowledge and Information Systems, 2019, 60(2): 591-615.
doi: 10.1007/s10115-018-1257-z |
[28] | 张育培, 柴玉梅, 王黎明. 基于鞅的数据流概念漂移检测方法[J]. 小型微型计算机系统, 2013, 34(8): 1787-1792. |
[29] | 胡阳, 孙自强. 基于McDiarmid边界的自适应加权概念漂移检测方法[J/OL]. 华东理工大学学报(自然科学版): 1-10 [2023-06-12]. |
[30] |
MASUD M, GAO J, KHAN L, et al. Classification and novel class detection in concept-drifting data streams under time constraints[J]. IEEE Transactions on knowledge and data engineering, 2010, 23(6): 859-874.
doi: 10.1109/TKDE.2010.61 |
[31] | MASUD M M, AL-KHATEEB T M, KHAN L, et al. Detecting recurring and novel classes in concept-drifting data streams[C]// 2011 IEEE 11th International Conference on Data Mining. IEEE, 2011: 1176-1181. |
[32] | SAURAV S, MALHOTRA P, TV V, et al. Online anomaly detection with concept drift adaptation using recurrent neural networks[C]// Proceedings of the acm india joint international conference on data science and management of data. 2018: 78-87. |
[33] |
JAIN M, KAUR G. Distributed anomaly detection using concept drift detection based hybrid ensemble techniques in streamed network data[J]. Cluster Computing, 2021, 24: 2099-2114.
doi: 10.1007/s10586-021-03249-9 |
[34] |
QIAO H, NOVIKOV B, BLECH J O. Concept drift analysis by dynamic residual projection for effectively detecting botnet cyber-attacks in IoT scenarios[J]. IEEE Transactions on Industrial Informatics, 2021, 18(6): 3692-3701.
doi: 10.1109/TII.2021.3108464 |
[35] | YANG L, MANIAS D M, SHAMI A. Pwpae: An ensemble framework for concept drift adaptation in iot data streams[C]// 2021 IEEE Global Communications Conference (GLOBECOM). IEEE, 2021: 1-6. |
[36] | KLINKENBERG R, JOACHIMS T. Detecting concept drift with support vector machines[C]// ICML. 2000: 487-494. |
[37] | SEELIGER A, NOLLE T, MÜHLHÄUSER M. Detecting concept drift in processes using graph metrics on process graphs[C]// Proceedings of the 9th Conference on Subject-Oriented Business Process Management. 2017: 1-10. |
[38] | 崔泽林. 基于密度网格的数据流聚类和概念漂移检测算法研究[D]. 北京: 北京交通大学, 2017. |
[39] |
LIU A, LU J, LIU F, et al. Accumulating regional density dissimilarity for concept drift detection in data streams[J]. Pattern Recognition, 2018, 76: 256-272.
doi: 10.1016/j.patcog.2017.11.009 |
[40] |
ROSS G J, ADAMS N M, TASOULIS D K, et al. Exponentially weighted moving average charts for detecting concept drift[J]. Pattern recognition letters, 2012, 33(2): 191-198.
doi: 10.1016/j.patrec.2011.08.019 |
[41] |
HOENS T R, POLIKAR R, CHAWLA N V. Learning from streaming data with concept drift and imbalance: an overview[J]. Progress in Artificial Intelligence, 2012, 1: 89-101.
doi: 10.1007/s13748-011-0008-0 |
[42] |
徐清妍, 何丽, 朱泓西. 改进Hoeffding不等式的概念漂移检测方法[J]. 计算机工程与应用, 2020, 56(19): 55-61.
doi: 10.3778/j.issn.1002-8331.1910-0397 |
[43] | 朱群, 张玉红, 胡学钢, 等. 一种基于双层窗口的概念漂移数据流分类算法[J]. 自动化学报, 2011, 37(9): 1077-1084. |
[44] |
JAIN M, KAUR G, SAXENA V. A K-Means clustering and SVM based hybrid concept drift detection technique for network anomaly detection[J]. Expert Systems with Applications, 2022, 193: 116510.
doi: 10.1016/j.eswa.2022.116510 |
[45] | SAKAMOTO Y, FUKUI K I, GAMA J, et al. Concept drift detection with clustering via statistical change detection methods[C]// 2015 Seventh International Conference on Knowledge and Systems Engineering (KSE). IEEE, 2015: 37-42. |
[46] | DE SOUSA R G, PERES S M, FANTINATO M, et al. Concept drift detection and localization in process mining: An integrated and efficient approach enabled by trace clustering[C]// Proceedings of the 36th annual ACM symposium on applied computing. 2021: 364-373. |
[47] | FANIZZI N, D’AMATO C, ESPOSITO F. Conceptual clustering and its application to concept drift and novelty detection[C]// The Semantic Web: Research and Applications: 5th European Semantic Web Conference, ESWC 2008, Tenerife, Canary Islands, Spain, June 1-5, 2008 Proceedings 5. Springer Berlin Heidelberg, 2008: 318-332. |
[48] |
YUAN Y, WANG Z, WANG W. Unsupervised concept drift detection based on multi-scale slide windows[J]. Ad Hoc Networks, 2021, 111: 102325.
doi: 10.1016/j.adhoc.2020.102325 |
[49] |
REN S, LIAO B, ZHU W, et al. The gradual resampling ensemble for mining imbalanced data streams with concept drift[J]. Neurocomputing, 2018, 286: 150-166.
doi: 10.1016/j.neucom.2018.01.063 |
[50] |
ELWELL R, POLIKAR R. Incremental learning of concept drift in nonstationary environments[J]. IEEE Transactions on Neural Networks, 2011, 22(10): 1517-1531.
doi: 10.1109/TNN.2011.2160459 pmid: 21824845 |
[51] |
GUO H, ZHANG S, WANG W. Selective ensemble-based online adaptive deep neural networks for streaming data with concept drift[J]. Neural Networks, 2021, 142: 437-456.
doi: 10.1016/j.neunet.2021.06.027 pmid: 34273615 |
[52] |
YANG Z, AL-DAHIDI S, BARALDI P, et al. A novel concept drift detection method for incremental learning in nonstationary environments[J]. IEEE transactions on neural networks and learning systems, 2019, 31(1): 309-320.
doi: 10.1109/TNNLS.5962385 |
[53] | GAMA J, MEDAS P, CASTILLO G, et al. Learning with drift detection[C]// Advances in Artificial Intelligence-SBIA 2004: 17th Brazilian Symposium on Artificial Intelligence, Sao Luis, Maranhao, Brazil, September 29-Ocotber 1, 2004. Proceedings 17. Springer Berlin Heidelberg, 2004: 286-295. |
[54] | SCHLIMMER J C, GRANGER JR R H. Beyond incremental processing: Tracking concept drift[C]// Proceedings of the Fifth AAAI National Conference on Artificial Intelligence. 1986: 502-507. |
[55] |
SUSNJAK T, BARCZAK A L C, HAWICK K A. Adaptive cascade of boosted ensembles for face detection in concept drift[J]. Neural Computing and Applications, 2012, 21: 671-682.
doi: 10.1007/s00521-011-0663-x |
[56] | SPINOSA E J, DE LEON F, DE CARVALHO A P, et al. Olindda: A cluster-based approach for detecting novelty and concept drift in data streams[C]// Proceedings of the 2007 ACM symposium on Applied computing. 2007: 448-452. |
[57] | YANG L, GUO W, HAO Q, et al. CADE: Detecting and explaining concept drift samples for security applications[C]// 30th USENIX Security Symposium (USENIX Security 21). 2021: 2327-2344. |
[58] | WANG S, MINKU L L. AUC Estimation and Concept Drift Detection for Imbalanced Data Streams with Multiple Classes[C]// 2020 International Joint Conference on Neural Networks (IJCNN), Glasgow, UK, 2020:1-8. |
[59] | WANG S, MINKU L L, GHEZZI D D, et al. Concept drift detection for online class imbalance learning[C]// The 2013 International Joint Conference on Neural Networks (IJCNN), Dallas, TX, USA, 2013. |
[60] |
ABBASI A, JAVED A R, CHAKRABORTY C, et al. ElStream: An Ensemble Learning Approach for Concept Drift Detection in Dynamic Social Big Data Stream Learning[J]. IEEE Access, 2021, 9:66408-66419.
doi: 10.1109/ACCESS.2021.3076264 |
[61] | YANG L, SHAMi A. A lightweight concept drift detection and adaptation framework for IoT data streams[J]. IEEE Internet of Things Magazine, 2021, 4:96-101. |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||