[1] |
袁国兴, 张云泉, 袁良. 2021年中国高性能计算机发展现状分析[J]. 计算机工程与科学, 2021, 43(12): 2091-2097.
|
[2] |
ZHANG Y Q, LIANG Y, YUAN G X, et al. State-of-the-Art Analysis and Perspectives of China HPC Development in 2022[J]. Frontiers of Data and Computing, 2022, 4(6): 3-12.
|
[3] |
YAO W, CHEN J, SU Z, et al. Porting and optimizing of NAMD on Sunway-Taihu-Light system[J]. Computer Engineering & Science, 2017, 39(6): 1022.
|
[4] |
FAN X, XIA Z, LONG S, et al. SIMD optimization of smoothed particle hydrodynamics based on ARM SVE[J]. Computer Engineering & Science, 2021, 43(6): 989-996.
|
[5] |
柳安军, 殷洪辉, 王利, 等. 基于新一代神威超算的计算流体力学Palabos软件的并行优化[J]. 计算机科学, 2022, 49(10): 66-73.
doi: 10.11896/jsjkx.220100089
|
[6] |
吕小敬, 刘钊, 蔡蕙伊, 等. 面向国产神威众核架构的区域气候模式CWRF性能优化技术[J]. 电子技术应用, 2022, 48(1): 31-38.
|
[7] |
孙玮, 毕玉江, 程耀东. ARM处理器上的格点QCD计算与优化[J]. 计算机科学, 2023, 50(6): 52-57.
doi: 10.11896/jsjkx.230200159
|
[8] |
王其涵, 庞建民, 岳峰, 等. 面向申威架构的KNN并行算法实现与优化[J]. 计算机工程, 2023, 49(05): 286-294.
|
[9] |
吴铁彬, 过锋, 王谛. 面向E级计算的高性能处理器核心运算架构研究进展[J]. 计算机工程与科学, 2023, 45(5): 761-771.
|
[10] |
高剑刚, 刘鑫, 李芳, 等. 面向神威众核超算系统的并行计算模型研究[J]. 计算机学报, 2023, 46(7): 1339-1349.
|
[11] |
LIPPERT T, PAWLOWSKI M, KRANZLMULLER D, et al. PRACE in the EuroHPC Era[EB/OL]. (2019-08) [2023-04-25]. https://prace-ri.eu/wp-content/uploads/2019/08/PRACEintheEuroHPCEra.pdf.
|
[12] |
STROHMAIER E, DONGARRA J, SIMON H, et al. TOP500 Poster[R/OL]. https://www.top500.org/lists/top500/. 2021-12-21.
|
[13] |
ThunderX2: Arm-based Processor[EB/OL]. (2017-06) [2023-04-25]. https://cn.marvell.com/products/server- processors/thunderx2-arm-processors.html.
|
[14] |
Ampere Computing Releases Altra Series Processors[EB/OL]. (2021-09) [2023-04-25]. https://www.elecfans.com/d/1235108.html.
|
[15] |
NVIDIA Launches Grace CPU Superchip[EB/OL].(2023-04-25) [2023-04-25]. https://blogs.nvidia.cn/2022/03/23/nvidia-introduces-grace-cpu-superchip/.
|
[16] |
ABRAHAM M J, MURTOLA T, SCHULZ R, et al. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers[J]. SoftwareX, 2015, 1: 19-25.
|
[17] |
张驭洲, 曹武迪, 卜景德, 等. GROMACS2020在ROCm平台上的移植与优化[J]. 计算机工程与科学, 2021, 43(11): 1901-1909.
|
[18] |
MANS I A, NATARAJAN A M, ARTUR P, et al. Breaking Down the Parallel Performance of GROMACS, a High-Performance Molecular Dynamics Software[C]. In Parallel Processing and Applied Mathematics:14th International Conference, PPAM, 2022: 333-345.
|
[19] |
郑晓欢, 陈明奇, 唐川, 等. 全球高性能计算发展态势分析[J]. 世界科技研究与发展, 2018, 40(3): 249-260.
|
[20] |
田卓, 陈一峯. 神威太湖之光上分子动力学模拟的性能优化[J]. 软件学报, 2021, 32(9): 2945-2962.
|
[21] |
YU Y, AN H, CHEN J, et al. Pipelining computation and optimization strategies for scaling gromacs on the sunway many-core processor[C]. Algorithms and Architectures for Parallel Processing:17th International Conference, Springer International Publishing, 2017: 18-32.
|
[22] |
LIANG J, HUA R, ZHANG H, et al. Accelerated molecular dynamics simulation of Silicon Crystals on TaihuLight using OpenACC[J]. Parallel Computing, 2020, 99(2): 245-258.
|
[23] |
ANDOH Y, ICHIKAWA S, SAKASHITA T, et al. An exa-scale high-performance molecular dynamics simulation program: MODYLAS[J]. The Journal of Chemical Physics, 2023, 158(19): 194803.
|
[24] |
林增, 武铮, 安虹, 等. PME算法在神威太湖之光上的移植和优化[J]. 小型微型计算机系统, 2021, 42(1): 9-14.
|
[25] |
华为助力中科大打造千万亿次“瀚海20超级计算系统”[EB/OL]. https://e.huawei.com/cn/case-studies/intelligent-computing/2021/hpc-ustc-taishan-infiniband-supercomputing.
|
[26] |
华为助力阿尔伯特•爱因斯坦研究所扩展计算资源提升引力波信号分析能力[EB/OL]. https://e.huawei.com/cn/case-studies/cn/2018/201808100941.
|
[27] |
KUTZNER C, PALL S, FECHNERr M, et al. More bang for your buck: Improved use of GPU nodes for GROMACS 2018[J]. Journal of computational chemistry, 2019, 40(27): 2418-2431.
doi: 10.1002/jcc.26011
pmid: 31260119
|
[28] |
GECHT M, SIGGEL M, LINKE M, et al. MDBenchmark: A toolkit to optimize the performance of molecular dynamics simulations[J]. The Journal of Chemical Physics, 2020, 153(14): 144105.
|
[29] |
GROMACS development team. GROMACS 2023.2 documentation[EB/OL]. https://manual.gromacs.org/current/manual-2023.2.pdf.
|
[30] |
张宝花, 徐顺. GROMACS软件并行计算性能分析[J]. 计算机系统应用, 2016, 25(12): 16-23.
|
[31] |
寇大治, 左光宏. nPME对GROMACS软件并行计算性能的影响分析[J]. 计算机应用与软件, 2014, 31(10): 13-15.
|
[32] |
张庭坚. 基于“神威·太湖之光”的高性能GROMACS算法研究[D]. 济南: 山东大学.
|
[33] |
ZHANG T, LI Y, GAO P, et al. SW_GROMACS: accelerate GROMACS on Sunway TaihuLight[C]. Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, 2019: 1-14.
|
[34] |
陈俊仕. 国产申威众核处理器上分子生物学应用的算法设计和性能优化方法研究[D]. 合肥: 中国科学技术大学, 2020.
|
[35] |
CHEN J S, AN H, HAN W T, et al. Towards efficient short-range pair interaction on sunway many-core architecture[J]. Journal of Computer Science and Technology, 2021, 36: 123-139.
|
[36] |
GROMACS. GROMACS benchmarks: water_bare_ hbonds.tar.gz[EB/OL].(2020-09-23) [2023-10-31]. http://ftp.gromacs.org/pub/benchmarks/water_bare_hbonds.tar.gz.
|
[37] |
LARABEL M. GROMACS: Implementation: MPI CPU Input: water_GMX50_bare[R/OL]. US: OpenBenchmarking.org/Phoronix Media, 2021. https://openbenchmarking.org/test/pts/gromacs.
|