[1] |
施巍松, 张星洲, 王一帆 , et al. 边缘计算:现状与展望[J]. 计算机研究与发展, 2019,56(01):69-89.
|
[2] |
肖博达, 周国富 . 人工智能技术发展及应用综述[J]. 福建电脑, 2018, 34(01): 98-99+103.
|
[3] |
李肯立, 刘楚波 . 边缘智能:现状和展望[J]. 大数据, 2019,5(03):69-75.
|
[4] |
施巍松, 孙辉, 曹杰 , et al. 边缘计算:万物互联时代新型计算模型[J]. 计算机研究与发展, 2017,54(05):907-24.
|
[5] |
李奥, 廖军, 刘永生 , et al. 中国联通智能边缘计算技术演进规划与应用研究 [J]. 信息技术与信息化, 2019(09):241-244.
|
[6] |
张星洲, 鲁思迪, 施巍松 . 边缘智能中的协同计算技术研究[J]. 人工智能, 2019(05):55-67.
|
[7] |
Chandakkar P S, Li Y, Ding P L K , et al. Strategies for re-training a pruned neural network in an edge computing paradigm [C]. 2017 IEEE International Conference on Edge Computing (EDGE). IEEE, Piscataway, NJ, 2017.
|
[8] |
Li H, Kadav A, Durdanovic I , et al. Pruning Filters for Efficient ConvNets[J]. arXiv: Computer Vision and Pattern Recognition, 2016.
|
[9] |
Molchanov P, Tyree S, Karras T , et al. Pruning Convolutional Neural Networks for Resource Efficient Inference [C]. International Conference on Learning Representations. 2017.
|
[10] |
Yang T, Chen Y, Sze V , et al. Designing Energy-Efficient Convolutional Neural Networks Using Energy-Aware Pruning [C]. Computer Vision and Pattern Recognition, 2017: 6071-6079.
|
[11] |
Courbariaux M, Hubara I, Soudry D , et al. Binarized Neural Networks: Training Deep Neural Networks with Weights and Activations Constrained to +1 or -1[J]. arXiv: Learning, 2016.
|
[12] |
Li F, Zhang B, Liu B , et al. Ternary Weight Networks[J]. arXiv: Computer Vision and Pattern Recognition, 2016.
|
[13] |
Tai C, Xiao T, Zhang Y , et al. Convolutional neural networks with low-rank regularization[J]. arXiv: Learning, 2015.
|
[14] |
Caruana R . Multitask learning[J]. Machine learning, 1997,28(1):41-75.
|
[15] |
Hinton G E, Vinyals O, Dean J , et al. Distilling the Knowledge in a Neural Network[J]. arXiv: Machine Learning, 2015.
|
[16] |
Li E, Zeng L, Zhou Z , et al. Edge AI: On-Demand Accelerating Deep Neural Network Inference via Edge Computing[J]. IEEE Transactions on Wireless Communications, 2020,19(1):447-457.
|
[17] |
Li H, Ota K, Dong M . Learning IoT in edge: Deep learning for the Internet of Things with edge computing[J]. IEEE network, 2018,32(1):96-101.
|
[18] |
Dean J, Corrado G S, Monga R , et al. Large Scale Distributed Deep Networks [C]. Neural Information Processing Systems, 2012: 1223-1231.
|
[19] |
杨志华, 杨国杰 . 智慧交通PLC-Io T全联接设计及边缘智能实现[J]. 交通与港航, 2019,6(05):48-54.
|
[20] |
罗超 . SenseDLC嵌入式人像识别SDK安防边缘的“小巨人”[J]. 中国公共安全, 2019(03):133-134.
|
[21] |
周莎 . 基于情境感知的智能家居节能系统的设计与实现[D]. 北京邮电大学, 2019.
|