Frontiers of Data and Computing ›› 2020, Vol. 2 ›› Issue (1): 38-54.
doi: 10.11871/jfdc.issn.2096-742X.2020.01.004
Special Issue: “高性能与高通量计算及应用”专刊
Previous Articles Next Articles
Zhou Guangqing1,*(),Zhang Yunquan2,Jiang Jinrong3,Zhang He1,Wu Baodong2,Cao Hang2,Wang Tianyi3,Hao Huiqun3,Zhu Jiawen1,Yuan Liang2,Zhang Minghua1,*()
Received:
2020-01-03
Online:
2020-02-20
Published:
2020-03-28
Contact:
Zhou Guangqing,Zhang Minghua
E-mail:zhgq@mail.iap.ac.cn;minghua.zhang2@yahoo.com
Zhou Guangqing,Zhang Yunquan,Jiang Jinrong,Zhang He,Wu Baodong,Cao Hang,Wang Tianyi,Hao Huiqun,Zhu Jiawen,Yuan Liang,Zhang Minghua. Earth System Model: CAS-ESM[J]. Frontiers of Data and Computing, 2020, 2(1): 38-54.
Fig.5
(a) The computing speed of the model before and after optimization, blue line for original model, red line for the model with communication optimization, floating point performance optimization, etc., green line for the fully optimized model; (b) The speedup of the fully optimized model on NUDT E-level super computer [29] ."
Table 3
The model comparison experiments in CMIP6"
No. | Short name | Long name of MIP | CAS-ESM |
---|---|---|---|
1 | AerChemMIP | Aerosols and Chemistry Model Intercomparison Project | 参加 |
2 | C4MIP | Coupled Climate Carbon Cycle Model Intercomparison Project | 参加 |
3 | CFMIP | Cloud Feedback Model Intercomparison Project | 拟参加 |
4 | DAMIP | Detection and Attribution Model Intercomparison Project | 参加 |
5 | DCPP | Decadal Climate Prediction Project | 拟参加 |
6 | FAFMIP | Flux‐Anomaly‐Forced Model Intercomparison Project | 拟参加 |
7 | GeoMIP | Geoengineering Model Intercomparison Project | 拟参加 |
8 | GMMIP | Global Monsoons Model Intercomparison Project | 参加 |
9 | HighResMIPI | High Resolution Model Intercomparison Project | 不参加 |
10 | ISMIP6 | Ice Sheet Model Intercomparison Project for CMIP6 | 拟参加 |
11 | LS3MIP | Land Surface, Snow and Soil Moisture | 参加 |
12 | LUMIP | Land‐Use Model Intercomparison Project | 参加 |
13 | OMIP | Ocean Model Intercomparison Project | 拟参加 |
14 | PMIP | Palaeoclimate Modelling Intercomparison Project | 拟参加 |
15 | RFMIP | Radiative Forcing Model Intercomparison Project | 不参加 |
16 | ScenarioMIP | Scenario Model Intercomparison Project | 参加 |
17 | VolMIP | Volcanic Forcings Model Intercomparison Project | 拟参加 |
18 | CORDEX* | Coordinated Regional Climate Downscaling Experiment | 拟参加 |
19 | DynVar* | Dynamics and Variability of the Stratosphere‐Troposphere System | 不参加 |
20 | SIMPI* | Sea‐Ice Model Intercomparison Project | 不参加 |
21 | VIACS AB* | VIACS Advisory Board for CMIP6 | 不参加 |
[1] | 梁信忠 . IAP GCM的设计与气候数值模拟[D]. 北京:中国科学院大气物理研究所, 1986 . |
[2] | ZENG Q C, ZHANG X H, LIANG X Z, YUAN C G and CHEN S F . Documentation of IAP Two-Level Atmospheric General Circulation Model[R]. TRO44, DOE/ER/60314 -HI, 1989. |
[3] | 张学洪, 曾庆存 . 大洋环流模式的计算设计[J]. 大气科学, 1988(特刊), 149-165. |
[4] | DAI Y J, ZENG Q C . A Land Surface Model (IAP94) for Climate Studies Part I: Formulation and Validation in Off-Line Experiments[J]. Adv. Atmos. Sci, 1997,14(4):433-460. |
[5] | ZHANG X, BAO N, YU R C, WANG W . Coupling scheme experiments based on an atmospheric and an oceanic GCM[J]. Chinese J. Atmos. Sci., 1992,16:129-144. |
[6] | GUO Y, YU Y, CHEN K, JIN X, ZHANG X . Mean climate state simulated by a coupled ocean- atmosphere general circulation model[J]. Theor. Appl. Climatol., 1996,55:99-112. |
[7] | 孙泓川, 周广庆, 曾庆存 . IAP第四代大气环流模式的气候系统模式模拟性能评估[J]. 大气科学, 2012,36(2). doi: 10.3878/j.issn.1006-9895.2011.11062. |
[8] | 曾庆存, 袁重光, 王万秋 , 等. 跨季度气候距平数值预测试验[J]. 大气科学, 1990,14(10):14-25. |
[9] | 林朝晖, 刘辉志, 谢正辉, 王爱慧 . 陆面水文过程研究进展[J]. 大气科学, 2008,32(4):935-949. |
[10] | YUAN X, XIE Z H, ZHENG J, TIAN XJ, YANG Z L . Effects of Water Table Dynamics on Regional Climate: A Case Study over East Asian Monsoon Area[J]. Journal of Geophysical Research: Atmosphere, 2008,113, D21112. doi: 10.1029 /2008JD010180. |
[11] | ZENG X D, ZENG X, BARLAGE M . Growing temperate shrubs over arid and semiarid regions in The Community Land Model - Dynamic Global Vegetation Model (CLM-DGVM)[J]. Global Biogeochemical Cycles, 2008, 22, GB3003. doi: 10.1029/2007GB003014. |
[12] | Li F, ZENG X D LEVIS S . A process-based fire parameterization of intermediate complexity in a Dynamic Global Vegetation Model[J]. Biogeosciences, 2012,9:2761-2780, doi: 10.5194/bg-9-2761-2012. |
[13] | 罗淦, 王自发 . 全球环境大气输送模式(GEATM)的建立及其验证[J]. 大气科学, 2006,30(03):504-518. |
[14] | LI Y C, XU Y F . Estimate of anthropogenic CO2 in the Pacific Ocean using two different simulation approaches[J]. Adv. Atmos. Sci., 2012. doi: 10.1007/s00376-012-1170-4. |
[15] | ZHANG H, ZHANG M, ZENG Q . Sensitivity of simulated climate to two atmospheric models: Interpretation of differences between dry models and moist models[J]. Mon. Wea. Rev., 2013,141:1558-1576. |
[16] | LIU H L, LIN P F, YU Y Q, Zhang X H . The baseline evaluation of LASG/IAP Climate system Ocean Model (LICOM) version 2[J]. Acta Meteor. Sinica, 2012,26(3):318-329.doi: 10.1007/s13351-012-0305-y. |
[17] | DAI Y, ZENG X, DICKINSON R E, BAKER I, BONAN G B, BOSILOVICH M G, DENNING A S, DIRMEYER P A, HOUSER P R, NIU G, OLESON K W, SCHLOSSER C A, YANG Z L . The Common Land Model (CLM)[J]. Bull. Am. Meteor. Soc., 2003,84:1013-1023.doi: 10.1175/BAMS-84-8-1013. |
[18] | HUNKE E C, LIPSCOMB W H . CICE: The Los Alamos Sea Ice Model. Documentation and Software User's Manual, Version 4.0[R]. T-3 Fluid Dynamics Group, Los Alamos National Laboratory, Tech. Rep. LA-CC-06-012, 2008. |
[19] | ZENG X D . Evaluating the dependence of vegetation on climate in an improved dynamic global vegetation model[J]. Adv. Atmos. Sci., 2010,27:977-991. doi: 10.1007/s00376-009-9186-0. |
[20] | XU Y F, LI Y C, CHU M . A global ocean biogeochemistry general circulation model and its simulations[J]. Adv. Atmos. Sci., 2013,30(3):922-939. doi: 10.1007/s00376-012-2162-0. |
[21] | JI D, WANG L, FENG J, WU Q, CHENG H, ZHANG Q, YANG J, DONG W, DAI Y, GONG D, ZHANG R H, WANG X, LIU J, MOORE J C, CHEN D, ZHOU M . Description and basic evaluation of Beijing Normal University Earth System Model (BNU-ESM) version 1[J]. Geosci. Model Dev.,2014,7:2039-2064.. |
[22] | CRAIG A P, VERTENSTEIN M, Jacob R . A new flexible coupler for Earth System Modelling developed for CCSM4 and CESM1[J]. Int. J. High Perform. C, 2012,26:31-42.doi: 10.1177/1094342011428141. |
[23] | 曾庆存, 周广庆, 浦一芬, 陈文, 李荣凤, 廖宏, 林朝晖, 刘辉志, 王必正, 谢正辉, 徐永福, 薛峰, 曾晓东, 张凤 . 地球系统动力学模式及模拟研究[J]. 大气科学, 2008,32(4):653-680. |
[24] | 曾庆存, 林朝晖 . 地球系统动力学模式和模拟研究的进展[J]. 地球科学进展, 2010,25(1):1-6. |
[25] | WANG Y Z, JIANG J R, ZHANG H, XIAO D, WANG L Z, RANJAN R, ZOMAYA A Y . A scalable parallel algorithm for atmospheric general circulation models on a multi-core cluster[J]. Future Generation Computer Systems, 2017,72:1-10. |
[26] | XIAO J M, LI S G, WU B D, ZHANG H, LI K, YAO E, ZHANG Y Q, TAN Gv M . Communication-Avoiding for Dynamical Core of Atmospheric General Circulation Model[C]. In Proceedings of the 47th International Conference on Parallel Processing, p. 12. ACM, 2018. (CCF B). |
[27] | WU B D, LI S G, ZHANG Y Q , et al. AGCM3D: A Highly Scalable Finite-Difference Dynamical Core of Atmospheric General Circulation Model based on 3D Decomposition[C]. 2018 IEEE 24th International Conference on Parallel and Distributed Systems (ICPADS). IEEE, 2018. ( CCF C). |
[28] | CAO H, YUAN L, ZHANG H, WU B D, LI S G, LU P Q, ZHANG Y Q, XU Y J, ZHANG M H. A Highly Efficient Dynamical Core of Atmospheric General Circulation Model based on Leap-Format [C]. IPDPS 2020. |
[29] | 郝卉群, 姜金荣, 王天一, 刘海龙, 林鹏飞. LICOM: 全球海洋环流模式[C]. HPC China, 2017. |
[30] | WANG Y Z, JIANG J R, HE J X . Coupling methods of global climate models and regional climate models[J]. High Technology Letters, 2017,23(1):90-95. |
[31] | WANG Y Z, JIANG J R, ZHANG J Q, HE J X, ZHANG H, CHI X B, YUE T X . An efficient parallel algorithm for the coupling of global climate models and regional climate models on a large-scale multi-core cluster[J]. The Journal of Supercomputing, 2018,74(8):3999-4018. |
[32] | 王天一, 姜金荣, 张贺 , 等. CAS-ESM编译运行脚本文件系统设计与实现[J]. 数值计算与计算机应用, 2016(4):287-298. |
[33] | JIANG J R, WANG T Y, CHI X B . SC-ESAP: A Parallel Application Platform for Earth System Model[J]. Procedia Computer Science (ICCS 2016. The International Conference on Computational Science), 2016,80:1-12. |
[34] | LI Y, ZHANG M . The Role of Shallow Convection over the Tibetan Plateau[J]. Journal of Climate, 2017,30(15):5791-5803. |
[35] | XIE X, ZHANG H, LIU X D, PENG Y R, LIU Y G . Role of microphysical parameterizations with droplet relative dispersion in IAP AGCM 4.1[J]. Adv. Atmos. Sci., 2018,35:248-259. |
[36] | JIN J B, ZENG Q C, WU L, LIU H L, ZHANG M H . Formulation of A New Ocean Salinity Boundary Condition and Its Impact on the Simulated Climate in an Oceanic General Circulation Model[J]. SCIENCE CHINA: Earth Science, 2017,60(3):491-500. |
[37] | SONG M R, LIU J P . The role of diminishing Arctic sea ice in increased winter snowfall over northern high-latitude continents in a warming environment[J]. Acta Oceanologica Sinica, 2017,36(8):34-41. |
[38] | WEI Y, CHEN X S, CHEN H S, LI J, WANG Z F, YANG W Y, GE B Z, DU H Y, HAO J Q, WANG W, LI J J, SUN Y L, HUANG H L . IAP-AACM v1.0:Global to regional evaluation of the atmospheric chemistry model in CAS-ESM[J]. Atmospheric Chemistry and Physics Discussions, 2018: 1-56. doi: 10.5194/acp-2018-1007. |
[39] | CHEN J, LIU Y, ZHANG M, PENG Y . Height dependency of aerosol-cloud interaction regimes[J]. Journal of Geophysical Research: Atmospheres, 2018, 123. |
[40] | ZHU J W, ZENG X D, ZHANG M H, DAI Y J, JI D Y, LI F, ZHANG Q, ZHANG H, SONG X . Evaluation of the new dynamic global vegetation model in CAS-ESM[J]. Adv. Atmos. Sci., 2018, 35(6): 659-670. |
[1] | YANG Chaobo, XIE Weihong, WANG Ligang. Research on Optimization and Intervention of SIR Model of Network Public Opinion [J]. Frontiers of Data and Computing, 2023, 5(1): 115-127. |
[2] | FAN Shaoping,ZHANG Zhiqiang. The Development and Prospect of Biomedical Informatics Driven by Data and Technology [J]. Frontiers of Data and Computing, 2023, 5(1): 41-54. |
[3] | ZHANG Lili,LI Jianhui. Governance Model for Research e-Infrastructures [J]. Frontiers of Data and Computing, 2022, 4(6): 92-104. |
[4] | TONG Zhao,WANG Ludi,ZHU Xiaojie,DU Yi. Research on Military Domain Named Entity Recognition Based on Pre-Training Model [J]. Frontiers of Data and Computing, 2022, 4(5): 120-128. |
[5] | LIU Yu,LIU Teng,ZHANG Baocheng. The Estimation of Satellite Phase Bias Based on Uncombined Model and Its Application in Precise Point Positioning Ambiguity Resolution [J]. Frontiers of Data and Computing, 2022, 4(4): 3-12. |
[6] | CHEN Yongchang,MA Guangqing,ZHANG Jingkui,SHENG Chuanzhen. Performance Analysis of Satellite Clock Offset Generated by PPP-RTK Server End [J]. Frontiers of Data and Computing, 2022, 4(4): 81-87. |
[7] | WANG Haitao,SONG Lihua. Context Awareness: Basic Concepts, Key Technologies and Application Systems [J]. Frontiers of Data and Computing, 2022, 4(3): 110-123. |
[8] | LU Yihang,LI Guoqing,CHEN Zugang. Research on Interoperability Models between Scientific Data Centers [J]. Frontiers of Data and Computing, 2022, 4(1): 69-83. |
[9] | LI Jingjing,YANG Xiaolin,LI Jun,HE Qunhui. Subtle Aberration Monitoring of Link Traffic Based on Outlier Detection [J]. Frontiers of Data and Computing, 2021, 3(6): 142-150. |
[10] | FAN Zhihua,LI Wenming,YE Xiaochun,FAN Dongrui. The Research Progress of Dataflow Computing: A Brief Survey [J]. Frontiers of Data and Computing, 2021, 3(5): 65-81. |
[11] | WANG Youyan,SUN Kanggao,TANG Ying. Interactive Movie Recommendation System Based on Local Model Fusion [J]. Frontiers of Data and Computing, 2021, 3(4): 54-69. |
[12] | ZHANG Chenyang,DU Yihua. A Survey on Short-text Generation Technology [J]. Frontiers of Data and Computing, 2021, 3(3): 111-125. |
[13] | CHEN Zijian,LI Jun,YUE Zhaojuan,ZHAO Zefang. Hybrid Recommendation Model Based on Autoencoder and Attribute Information [J]. Frontiers of Data and Computing, 2021, 3(3): 148-155. |
[14] | LIU Chunyu,SHI Zhuomin,YU Jianjun. Tree Model Based Prediction of Financial Reimbursement Approval [J]. Frontiers of Data and Computing, 2021, 3(2): 60-67. |
[15] | WEI Xin,WANG Yang. Research and Practice on Evaluation System of Science and Technology Competitiveness [J]. Frontiers of Data and Computing, 2021, 3(1): 74-67. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||