[1] |
吴建超, 王利民, 武港山. 视频群体行为识别综述[J]. 软件学报, 2023, 34(2): 964-984.
|
[2] |
丁静, 舒祥波, 黄捧, 等. 基于多模态多粒度图卷积网络的老年人日常行为识别[J]. 软件学报, 2023, 34(5): 2350-64.
|
[3] |
唐超, 王文剑, 李伟, 等. 基于多学习器协同训练模型的人体行为识别方法[J]. 软件学报, 2015, 26(11): 2939-50.
|
[4] |
ATAER-CANSIZOGLU E, JONES M, ZHANG Z, et al. Verification of very low-resolution faces using an identity-preserving deep face super-resolution network[J]. arXiv preprint arXiv:190310974, 2019.
|
[5] |
BAI Y, ZHANG Y, DING M, et al. Sod-mtgan: Small object detection via multi-task generative adversarial network[C]// Proceedings of the Proceedings of the European Conference on Computer Vision (ECCV), F, 2018.
|
[6] |
WANG Z, YE M, YANG F, et al. Cascaded SR-GAN for scale-adaptive low resolution person re-identification[C]// Proceedings of the IJCAI, F, 2018.
|
[7] |
HOU M, LIU S, ZHOU J, et al. Extreme low-resolution activity recognition using a super-resolution-oriented generative adversarial network[J]. Micromachines, 2021, 12(6): 670.
|
[8] |
JOLICOEUR-MARTINEAU A. The relativistic discriminator: a key element missing from standard GAN[J]. arXiv preprint arXiv:180700734, 2018.
|
[9] |
KUEHNE H, JHUANG H, GARROTE E, et al. HMDB: A Large Video Database for Human Motion Recognition[J]. IEEE, 2011: 2556-2563.
|
[10] |
SOOMRO K, ZAMIR A R, SHAH M. UCF101: A dataset of 101 human actions classes from videos in the wild[C]// CRCV-TR-12-01, University of Central Florida, 2012.
|
[11] |
KARPATHY A, TODERICI G, SHETTY S, et al. Large-scale video classification with convolutional neural networks[C]// Proceedings of the Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, F, 2014.
|
[12] |
SIMONYAN K, ZISSERMAN A. Two-stream convolutional networks for action recognition in videos[J]. Advances in neural information processing systems, 2014: 568-576.
|
[13] |
WANG L, XIONG Y, WANG Z, et al. Temporal segment networks for action recognition in videos[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 41(11): 2740-55.
|
[14] |
TRAN D, BOURDEV L, FERGUS R, et al. Learning spatiotemporal features with 3d convolutional networks[C]// Proceedings of the Proceedings of the IEEE international conference on computer vision, F, 2015.
|
[15] |
SUN L, JIA K, YEUNG D-Y, et al. Human action recognition using factorized spatio-temporal convolutional networks[C]// Proceedings of the Proceedings of the IEEE international conference on computer vision, F, 2015.
|
[16] |
DIBA A, FAYYAZ M, SHARMA V, et al. Temporal 3d convnets: New architecture and transfer learning for video classification[J]. arXiv preprint arXiv:171108200, 2017.
|
[17] |
RYOO M, KIM K, YANG H. Extreme low resolution activity recognition with multi-siamese embedding learning[C]// Proceedings of the Proceedings of the AAAI conference on artificial intelligence, F, 2018.
|
[18] |
CHEN J, WU J, KONRAD J, et al. Semi-coupled two-stream fusion convnets for action recognition at extremely low resolutions[C]// Proceedings of the 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), F, 2017. IEEE.
|
[19] |
XU M, SHARGHI A, CHEN X, et al. Fully-coupled two-stream spatiotemporal networks for extremely low resolution action recognition[C]// Proceedings of the 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), F, 2018.
|
[20] |
RYOO M, ROTHROCK B, FLEMING C, et al. Privacy-preserving human activity recognition from extreme low resolution[C]// Proceedings of the Proceedings of the AAAI conference on artificial intelligence, F, 2017.
|
[21] |
GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[J]. Communications of the ACM, 2020, 63(11): 139-44.
|
[22] |
TRAN D, WANG H, TORRESANI L, et al. A closer look at spatiotemporal convolutions for action recognition[C]// Proceedings of the Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, F, 2018.
|
[23] |
ZHOU Y, SUN X, LUO C, et al. Spatiotemporal fusion in 3D CNNs: A probabilistic view[C]// Proceedings of the Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, F, 2020.
|
[24] |
CHEN Y, GE H, LIU Y, et al. Agpn: Action granularity pyramid network for video action recognition[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2023, 33(8): 3912-3923.
|
[25] |
HEDEGAARD L, IOSIFIDIS A. Continual 3D convolutional neural networks for real-time processing of videos[C]// Proceedings of the European Conference on Computer Vision, F, 2022.
|
[26] |
KAHATAPITIYA K, RYOO M S. Coarse-fine networks for temporal activity detection in videos[C]// Proceedings of the Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, F, 2021.
|
[27] |
LI S, WANG Z, LIU Y, et al. FSformer: Fast-Slow Transformer for video action recognition[J]. Image and Vision Computing, 2023, 137.
|
[28] |
HUANG Y, LU Z, SHAO Z, et al. Simultaneous denoising and super-resolution of optical coherence tomography images based on generative adversarial network[J]. Optics express, 2019, 27(9): 12289-307.
|
[29] |
STROUD J, ROSS D, SUN C, et al. D3d: Distilled 3d networks for video action recognition[C]// Proceedings of the Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, F, 2020.
|
[30] |
RAGHAV G, SAMIRA E K, VINCENT M, et al. The ”something something” video database for learning and evaluating visual common sense[J]. In ICCV, 2017, 1(5): 5843-5851.
|
[31] |
KINGMA D P, BA J L. Adam: A method for stochastic optimization[J]. arXiv, 2014 https://doi.org/10.48550/arXiv.1412.6980.
|
[32] |
XIE S, SUN C, HUANG J, et al. Rethinking spatiotemporal feature learning for video understanding[J]. arXiv preprint arXiv:171204851, 2017.
|
[33] |
LIN J, GAN C, HAN S. Tsm: Temporal shift module for efficient video understanding[C]// Proceedings of the Proceedings of the IEEE/CVF international conference on computer vision, F, 2019.
|
[34] |
JIANG B, YAN J, WANG M, et al. STM: SpatioTemporal and Motion Encoding for Action Recognition[Z]. 2019
|
[35] |
LI Y, JI B, SHI X, et al. Tea: Temporal excitation and aggregation for action recognition[C]// Proceedings of the Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, F, 2020.
|
[36] |
WANG L, TONG Z, JI B, et al. Tdn: Temporal difference networks for efficient action recognition[C]// Proceedings of the Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, F, 2021.
|
[37] |
LIU Y, YUAN J, TU Z. Motion-driven visual tempo learning for video-based action recognition[J]. IEEE Transactions on Image Processing, 2022, 31: 4104-16.
|
[38] |
LI K. Uniformer: Unified transformer for efficient spatial-temporal representation learning[C]// in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit, 2022: 2380-2390.
|
[39] |
CARREIRA J, ZISSERMAN A. Quo vadis, action recognition? a new model and the kinetics dataset[C]// Proceedings of the proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, F, 2017.
|