数据与计算发展前沿 ›› 2025, Vol. 7 ›› Issue (2): 96-108.

CSTR: 32002.14.jfdc.CN10-1649/TP.2025.02.010

doi: 10.11871/jfdc.issn.2096-742X.2025.02.010

• 技术与应用 • 上一篇    下一篇

基于LERT-CRNN-KAN的110警情分类方法研究

刘卓娴1(),石拓2,*(),胡啸峰1   

  1. 1.中国人民公安大学,信息网络安全学院,北京 100038
    2.北京警察学院,公安管理系,北京 102202
  • 收稿日期:2024-11-05 出版日期:2025-04-20 发布日期:2025-04-23
  • 通讯作者: 石拓
  • 作者简介:刘卓娴,现为中国人民公安大学在读研究生,CCF学生会员,主要研究方向为自然语言处理、警情挖掘等。
    本文主要承担工作为方法提出,实验执行,论文撰写。
    LIU Zhuoxian, is currently a graduate student at the People’s Public Security University of China and a student member of CCF. Her main research areas include Natural Language Processing (NLP), police situation mining, etc.
    In this paper, she is mainly responsible for proposing methods, conducting experiments, and writing the manuscript.
    E-mail:1240875185@qq.com|石拓,博士,现为北京警察学院教授,主要研究方向为人工智能、公安大数据等。
    本文主要承担工作为问题提出,数据支撑,论文修改。
    SHI Tuo, Ph.D., is a professor at the Beijing Police College. Her main research areas include artificial intelligence and public security big data.
    In this paper, she is mainly responsible for proposing the research problem, providing data support, and revising the manuscript.
    E-mail: stshi8808@sina.com
  • 基金资助:
    北京市自然科学基金“基于多源数据的北京市电信网络诈骗被害分析及精准预防策略研究”(9244025)

Research on 110 Emergency Call Incident Classification Method Based on LERT-CRNN-KAN

LIU Zhuoxian1(),SHI Tuo2,*(),HU Xiaofeng1   

  1. 1. Department of Information Network Security, PPSUC, Beijing 100038, China
    2. Department of Public Security Management, Beijing Police College, Beijing 102202, China
  • Received:2024-11-05 Online:2025-04-20 Published:2025-04-23
  • Contact: SHI Tuo

摘要:

【目的】为了有效解决基层公安机关在处理110警情特别是电信网络诈骗警情时的人工分类效率低和自动化分类效果差的问题,进一步提升警力资源的利用效率和实战效能。【方法】构建一种融合KAN算法、语言学信息增强文本预处理方法(LERT)、卷积神经网络(CNN)和双向长短期记忆网络(BiLSTM)的多通道神经网络警情分类模型。【结果】实验使用中国北方B市的真实警情数据进行测试,结果表明,在警情三分类任务中达到了91.9%的分类准确率,对比消融实验证实该模型优于基线模型。【结论】模型有效解决了110警情数据的分类问题,为基层公安机关提供了一种高效的智能化分类工具,满足了实战要求。其他应用场景有待进一步探索。

关键词: KAN, 警情分类, 多通道神经网络

Abstract:

[Purpose] This paper aims to address the issues of low manual classification efficiency and poor automated classification faced by grassroots public security organs in handling 110 emergency call incidents, especially those related to telecommunication network fraud, and to further enhance the utilization efficiency of police resources and operational effectiveness. [Method] A multi-channel neural network police call classification model integrating KAN algorithm, LERT (Linguistically-motivated bidirectional Encoder Representation from Transformer) for linguistic information-enhanced text preprocessing, CNN (Convolutional Neural Network), and BiLSTM (Bidirectional Long Short-Term Memory) is constructed. [Result] Experiments conducted using real 110 emergency call incident data from a city in northern China demonstrate that the model achieves a classification accuracy of 91.9%, and ablation experiments confirm its superiority to baseline models. [Conclusion] The model effectively addresses the classification problem of 110 emergency call incident data, providing an efficient and intelligent classification tool for grassroots public security organs and meeting operational requirements. Other application scenarios await further exploration.

Key words: KAN, 110 emergency call incident classification, multi-channel neural network