[1] |
Pan Y, Birdsey RA, Fang J, et al. A large and persistent carbon sink in the world’s forests[J]. Science, 2011, (333):988-993.
|
[2] |
Gurevitch J. Managing forests for competing goals[J]. Science, 2022, 376(6595):792-793.
doi: 10.1126/science.abp8463
pmid: 35587976
|
[3] |
于贵瑞, 杨萌, 郝天象. 统筹生态系统五库功能,筑牢国家生态基础设施――新时代我国生态建设理念、任务和目标[J]. 中国科学院院刊, 2022, 37(11):1534-1538.
|
[4] |
Yang Y, Shi Y, Sun W, et al. Terrestrial carbon sinks in China and around the world and their contribution to carbon neutrality[J]. Sci China Life Sci, 2022, 65: 861-895.
doi: 10.1007/s11427-021-2045-5
pmid: 35146581
|
[5] |
Friedlingstein P, Jones MW. O’Sullivan M, et al. Global Carbon Budget 2021[J]. Earth System Science Data, 2022, 14(4):1917-2005.
doi: 10.5194/essd-14-1917-2022
|
[6] |
Harris NL, Gibbs DA, Baccini A, et al. Global maps of twenty-first century forest carbon fluxes[J]. Nature Climate Change, 2021, 11(3):234-240.
doi: 10.1038/s41558-020-00976-6
|
[7] |
国家林业与草原局. 中国森林资源报告(2014-2018)[R]. 2019.
|
[8] |
Piao S, He Y, Wang X, et al. Estimation of China’s ter-restrial ecosystem carbon sink: Methods, progress and prospects[J]. Science China Earth Sciences, 2022, 65(4): 641-651.
doi: 10.1007/s11430-021-9892-6
|
[9] |
朱教君, 高添, 于立忠, 等, 温带次生林生态系统塔群监测研究平台(清原科尔塔群)[J]. 中国科学院院刊, 2021, 36(3):351-361.
|
[10] |
Tang X, Zhao X, Bai Y et al. Carbon pools in China’s terrestrial ecosystems: New estimates based on an inten-sive field survey[J]. Proceedings of the National Acade-my of Sciences, 2018, 115(16): 4021-4026.
|
[11] |
郭兆迪, 胡会峰, 李品, 等. 1977-2008年中国森林生物量碳汇的时空变化[J]. 中国科学: 生命科学, 2013, 43(5):421-431.
|
[12] |
Zhu S, Clement R, McCalmont J, et al. Stable gap-filling for longer eddy covariance data gaps: A globally validated machine-learning approach for carbon dioxide, water, and energy fluxes[J]. Agricultural and Forest Meteorology, 2022, 314: 108777.
doi: 10.1016/j.agrformet.2021.108777
|
[13] |
Guevara-Escobar A, Gonzalez-Sosa E, Cervantes-Ji-menez M, et al. Machine learning estimates of eddy co-variance carbon flux in a scrub in the Mexican highland[J]. Biogeosciences, 2021, 18(2):367-392.
doi: 10.5194/bg-18-367-2021
|
[14] |
Yao Y, Li Z, Wang T, et al. A new estimation of China’s net ecosystem productivity based on eddy covariance measurements and a model tree ensemble approach[J]. Agricultural and Forest Meteorology, 2018, 253-254:84-93.
|
[15] |
Jung M, Reichstein M, Margolis HA, et al. Global patter-ns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, sat-ellite, and meteorological observations[J/OL]. Journal of Geophysical Research, 2011, 116. https://doi.org/10.1029/2010JG001566.
|
[16] |
郭庆华, 刘瑾, 陶胜利, 等. 激光雷达在森林生态系统监测模拟中的应用现状与展望[J]. 科学通报, 2014, 6:459-478.
|
[17] |
Lu D, Zhu J, Wu D, et al. Detecting dynamics and vari-ations of crown asymmetry induced by natural gaps in a temperate secondary forest using terrestrial laser scanning[J]. Forest Ecology and Management, 2020, 473:118289.
doi: 10.1016/j.foreco.2020.118289
|
[18] |
Orwig DA, Boucher., Paynter I, et al. The potential to characterize ecological data with terrestrial laser scanning in Harvard Forest, MA[J]. Interface Focus, 2018, 2:20170044.
|
[19] |
Disney MI, Boni Vicari M, Burt A, et al. Weighing trees with lasers: advances, challenges and opportunities[J]. Interface Focus, 2018, 8(2):20170048.
doi: 10.1098/rsfs.2017.0048
|
[20] |
Qi J, Xie D, Yin T, et al. LESS: LargE-Scale remote sensing data and image simulation framework over het-erogeneous 3D scenes[J]. Remote Sensing of Environ-ment, 2019, 221:695-706.
|
[21] |
于贵瑞, 张雷明, 孙晓敏, 中国陆地生态系统通量观测研究网络(ChinaFLUX)的主要进展及发展展望[J]. 地理科学进展, 2014, 33(7):903-917.
doi: 10.11820/dlkxjz.2014.07.005
|
[22] |
高添, 于立忠, 于丰源, 等. 中国科学院清原森林生态系统观测研究站塔群平台的功能和应用[J]. 应用生态学报, 2020, 31(3):695-705.
doi: 10.13287/j.1001-9332.202003.040
|
[23] |
Pettorelli N, Vik JO, Mysterud A, et al. Using the sate-llite-derived NDVI to assess ecological responses to envi-ronmental change[J]. Trends in Ecology & Evolution, 2005, 20(9): 503-510.
doi: 10.1016/j.tree.2005.05.011
|
[24] |
Chen Q, Gao T, Zhu J, et al. Individual tree segmentation and tree height estimation using leaf-off and leaf-on UAV-LiDAR data in dense deciduous forests[J]. Remote Sensing, 2022, 14(12):2787.
doi: 10.3390/rs14122787
|
[25] |
Yu Y, Zhu J, Gao T, et al. Evaluating the influential var-iables on rainfall interception at different rainfall amount levels in temperate forests[J]. Journal of Hydrology, 2022, 615:128572.
doi: 10.1016/j.jhydrol.2022.128572
|
[26] |
Yu Y, Gao T, Zhu J, et al. Terrestrial laser scanningderived canopy interception index for predicting rainfall interce-ption[J]. Ecohydrology, 2020, 13(5): e2212.
|
[27] |
Moffat AM, Papale D, Reichstein M, et al. Compreh-ensive comparison of gap-filling techniques for eddy co-variance net carbon fluxes[J]. Agricultural and Forest Meteorology, 2007, 147(3):209-232.
doi: 10.1016/j.agrformet.2007.08.011
|
[28] |
Papale D, Valentini R. A new assessment of European forests carbon exchanges by eddy fluxes and artificial neural network spatialization[J]. Global Change Biology, 2003, 9(4):525-535.
doi: 10.1046/j.1365-2486.2003.00609.x
|