[1] |
Wong APS, Wijffels SE, Riser SC, et al. Argo Data 1999-2019: Two Million Temperature-Salinity Profiles and Subsurface Velocity Observations From a Global Array of Profiling Floats[J]. Front. Mar. Sci, 2020, 7:700.
doi: 10.3389/fmars.2020.00700
|
[2] |
Stewart R. H. Seasat: Results of the Mission[J]. Bulletin of the American Meteorological Society, 1988, 69 (12): 1441-1447.
doi: 10.1175/1520-0477(1988)069<1441:SROTM>2.0.CO;2
|
[3] |
Alsdorf D.E.; Rodríguez E.; Lettenmaier D.P. Mea-suring surface water from space[J]. Reviews of Geoph-ysics, 2007, 45, RG2002.
|
[4] |
Biancamaria S, Lettenmaier DP, Pavelsky TM. The SWOT mission and its capabilities for land hydrology[J]. Surveys in Geophysics, 2016, 37(2):307-377.
doi: 10.1007/s10712-015-9346-y
|
[5] |
Earth Science Data Systems (ESDS) Program Continuous Evolution[EB/OL].[2021-02-15]. https://earthdata.nasa.gov/esds/continuous-evolution.
|
[6] |
Ryabinin V., Barbière J., Haugan P., Kullenberg G., Smith N., McLean C., et al. The UN decade of ocean scie-nce for sustainable development[J]. Frontiers in Marine Science, 2019, 6:220-225.
doi: 10.3389/fmars.2019.00220
|
[7] |
NOAA Artificial Intelligence Strategic Plan 2021c-2025. Analytics for Next-Generation Earth Science[EB/OL].[2021-01-11]. https://sciencecouncil.noaa.gov/Portals/0/Artificial%20Intelligence%20Strategic%20Plan_Final%20Signed.pdf?ver=2021-01-19-114254-380.
|
[8] |
Machine learning at ECMWF: A roadmap for the next 10 years[EB/OL].[2021-01-02]. https://www.ecmwf.int/en/elibrary/81207-machine-learning-ecmwf-roadmap-next-10-years.
|
[9] |
Sonnewald M., Lguensat R., Jones D. C., Dueben P., Brajard J., and Balaji V. Bridging observations, theory and numerical simulation of the ocean using machine learning[J]. Environ. Res. Lett., 2021,16, 073008. doi: 10.1088/1748-9326/ac0eb0.
doi: 10.1088/1748-9326/ac0eb0
|
[10] |
Reichstein M., Camps-Valls G., Stevens B. et al. Deep learning and process understanding for data-driven Earth system science[J]. Nature, 2019, 566:195-204.
doi: 10.1038/s41586-019-0912-1
|
[11] |
Z. Sun, L. Sandoval, R. Crystal-Ornelas, et al. A review of earth artificial intelligence[J]. Computers & Geosciences, 2022, 159:329-345.
|
[12] |
Li X., Liu B., Zheng G., Ren Y., Zhang S., Liu Y., et al. Deep-learning-based information mining from ocean remote-sensing imagery[J]. Natl. Sci. Rev., 2020, 7(10): 1584-1605.
doi: 10.1093/nsr/nwaa047
pmid: 34691490
|
[13] |
T.Bolton,R.Abernathey,Laure Zanna. Applications of Deep Learning to Ocean Data Inference and Subgrid Parameterization[J]. Journal of Physical Oceanography, 2019, 49(10):2601-2614.
doi: 10.1175/JPO-D-19-0042.1
|
[14] |
Athos Agapiou. Remote sensing heritage in a petabyte-scale: satellite data and heritage Earth Engine applica-tions[J]. International Journal of Digital Earth, 2017, 10(1):85-102.
doi: 10.1080/17538947.2016.1250829
|
[15] |
Medvedev D, Lemson G, Rippin M, et al. SciServer Co-mpute: Bringing Analysis Close to the Data[C]. statistical and scientific database management, 2016:1-4.
|
[16] |
Wilkinson M., Dumontier M., Aalbersberg I. et al. The FAIR Guiding Principles for scientific data management and stewardship[J]. Sci Data., 2016, 3(1):53-62.
|
[17] |
Chen Y., Huerta E.A., Duarte J. et al. A FAIR and AI-ready Higgs boson decay dataset[J]. Sci Data., 2022, 9(31) :31-41.
doi: 10.1038/s41597-021-01109-0
|
[18] |
Ravi N., Chaturvedi P., Huerta E.A. et al. FAIR principles for AI models with a practical application for accelerated high energy diffraction microscopy[J]. Sci Data., 2022, 9(1):657-666.
doi: 10.1038/s41597-022-01712-9
pmid: 36357431
|
[19] |
Cloud-optimized format study[EB/OL]. [2020-01-01]. https://ntrs. nasa.gov/citations/20200001178.
|
[20] |
Organizing Geospatial data with Spatio Temporal Assets Catalogs:STAC using python[EB/OL].[2022-03-13]. https://towardsdatascience.com/organizing-geospatial-data-with-spatio-temporal-assets-catalogs-stac-using-python-45f1a64ca082.
|