Frontiers of Data and Computing ›› 2025, Vol. 7 ›› Issue (1): 186-202.
CSTR: 32002.14.jfdc.CN10-1649/TP.2025.01.014
doi: 10.11871/jfdc.issn.2096-742X.2025.01.014
• Technology and Application • Previous Articles
HE Yifei1,2,3(),ZHANG Yaonan1,3,4,*(
)
Received:
2023-03-27
Online:
2025-02-20
Published:
2025-02-21
HE Yifei, ZHANG Yaonan. Influence of Incomplete Landslide Data on Susceptibility Modeling and Suggestions for Improvement[J]. Frontiers of Data and Computing, 2025, 7(1): 186-202, https://cstr.cn/32002.14.jfdc.CN10-1649/TP.2025.01.014.
Table 1
Data type and sources of landslide inventory and influencing factors"
数据名称 | 原始数据类型 | 数据来源 |
---|---|---|
滑坡数据 | 点 | 中国地质调查局 |
坡度 | 栅格(90 m) | 提取自DEM( |
坡向 | 栅格(90 m) | 提取自DEM |
剖面曲率 | 栅格(90 m) | 提取自DEM |
平面曲率 | 栅格(90 m) | 提取自DEM |
道路密度 | 线 | |
河流密度 | 线 | |
土壤湿度 | 栅格(1 km) | |
岩性 | 面 | |
土地利用 | 栅格(1 km) | |
地质环境分区 | 面 | |
[1] | LIN Q, WANG Y. Spatial and temporal analysis of a fatal landslide inventory in China from 1950 to 2016[J]. Landslides, 2018, 15(12): 2357-2372. |
[2] | 陶伟, 孙岳. 基于GIS滑坡地质灾害易发性评价方法综述[J]. 世界有色金属, 2020, 561(21): 157-159. |
[3] | POURGHASEMI H R, TEIMOORI YANSARI Z, PANAGOS P, et al. Analysis and evaluation of landslide susceptibility: a review on articles published during 2005—2016 (periods of 2005—2012 and 2013—2016)[J]. Arabian Journal of Geosciences, 2018, 11(9): 1-12. |
[4] | WANG D, HAO M, CHEN S, et al. Assessment of landslide susceptibility and risk factors in China[J]. Natural hazards, 2021, 108(3): 3045-3059. |
[5] | GAPRINDASHVILI G, VAN WESTEN C J. Generation of a national landslide hazard and risk map for the country of Georgia[J]. Natural hazards, 2016, 80(1): 69-101. |
[6] | SAROGLOU C. GIS-based rockfall susceptibility zoning in Greece[J]. Geosciences, 2019, 9(4): 163. |
[7] | TITTI G, BORGATTI L, ZOU Q, et al. Landslide susceptibility in the Belt and Road Countries: continental step of a multi-scale approach[J]. Environmental Earth Sciences, 2021, 80(18): 1-18. |
[8] | BROECKX J, VANMAERCKE M, DUCHATEAU R, et al. A data-based landslide susceptibility map of Africa[J]. Earth-Science Reviews, 2018, 185: 102-121. |
[9] | GüNTHER A, REICHENBACH P, MALET J P, et al. Tier-based approaches for landslide susceptibility assessment in Europe[J]. Landslides, 2013, 10(5): 529-546. |
[10] | LIN L, LIN Q, WANG Y. Landslide susceptibility mapping on a global scale using the method of logistic regression[J]. Natural Hazards and Earth System Sciences, 2017, 17(8): 1411-1424. |
[11] | HONG Y, ADLER R, HUFFMAN G. Use of satellite remote sensing data in the mapping of global landslide susceptibility[J]. Natural hazards, 2007, 43(2): 245-256. |
[12] | COROMINAS J, VAN WESTEN C, FRATTINI P, et al. Recommendations for the quantitative analysis of landslide risk[J]. Bulletin of engineering geology and the environment, 2014, 73(2): 209-263. |
[13] | 周宇, 常鸣, 孙文静, 等. 基于改进证据权重法的北海道地震同震滑坡易发性评价[J]. 地理与地理信息科学, 2022, 38(1): 138-144. |
[14] | 李郎平, 兰恒星, 郭长宝, 等. 基于改进频率比法的川藏铁路沿线及邻区地质灾害易发性分区评价[J]. 现代地质, 2017, 31(5): 911-929. |
[15] | 罗金. 基于各类机器学习方法的滑坡易发性评价及软件系统开发[D]. 西安: 长安大学, 2021. |
[16] | 侯鹏鹂. 岷江上游区域泥石流发育规律与易发性评价[D]. 绵阳: 西南科技大学, 2022. |
[17] | GOETZ J, BRENNING A, PETSCHKO H, et al. Evaluating machine learning and statistical prediction techniques for landslide susceptibility modeling[J]. Computers & geosciences, 2015, 81: 1-11. |
[18] | 陈芯宇, 师芸, 温永啸, 等. 基于确定性系数与支持向量机的滑坡易发性评价[J]. 科学技术与工程, 2023, 23(2): 518-527. |
[19] | 艾骁. 基于机器学习的地震滑坡易发性评估模型构建[D]. 哈尔滨: 中国地震局工程力学研究所, 2021. |
[20] | 万洋, 郭捷, 马凤山, 等. 基于最大熵模型的中尼交通廊道滑坡易发性分析[J]. 中国地质灾害与防治学报, 2022, 33(2): 88-95. |
[21] | 邵健. 基于机器学习的滑坡敏感性评价研究[D]. 贵阳: 贵州大学, 2022. |
[22] | 张越, 宋炜炜. 基于BP神经网络和决策树的昆明市东川区滑坡空间易发性评价[J]. 国土与自然资源研究, 2023, 203(2): 67-70. |
[23] |
段宇英, 汤军, 刘远刚, 等. 基于随机森林的山西省柳林县黄土滑坡空间敏感性评价[J]. 地理科学, 2022, 42(2): 343-351.
doi: 10.13249/j.cnki.sgs.2022.02.016 |
[24] | HARP E L, KEEFER D K, SATO H P, et al. Landslide inventories: the essential part of seismic landslide hazard analyses[J]. Engineering Geology, 2011, 122(1-2): 9-21. |
[25] | STEGER S, MAIR V, KOFLER C, et al. Correlation does not imply geomorphic causation in data-driven landslide susceptibility modelling-Benefits of exploring landslide data collection effects[J]. Science of the total environment, 2021, 776: 145935. |
[26] | KIRSCHBAUM D, STANLEY T, ZHOU Y. Spatial and temporal analysis of a global landslide catalog[J]. Geomorphology, 2015, 249: 4-15. |
[27] | STEGER S, SCHMALTZ E, GLADE T. The (f) utility to account for pre-failure topography in data-driven landslide susceptibility modelling[J]. Geomorphology, 2020, 354: 107041. |
[28] | STEGER S, BRENNING A, BELL R, et al. Exploring discrepancies between quantitative validation results and the geomorphic plausibility of statistical landslide susceptibility maps[J]. Geomorphology, 2016, 262: 8-23. |
[29] | LIMA P, STEGER S, GLADE T. Counteracting flawed landslide data in statistically based landslide susceptibility modelling for very large areas: a national-scale assessment for Austria[J]. Landslides, 2021, 18(11): 3531-3546. |
[30] | STEGER S, MAIR V, KOFLER C, et al. The necessity to consider the landslide data origin in statistically-based spatial predictive modelling-A landslide intervention index for South Tyrol (Italy)[C]. EGU General Assembly Conference Abstracts, 2020: 3440. |
[31] | STEGER S, BRENNING A, BELL R, et al. The influence of systematically incomplete shallow landslide inventories on statistical susceptibility models and suggestions for improvements[J]. Landslides, 2017, 14: 1767-1781. |
[32] |
DINGEMANSE N J, DOCHTERMANN N A. Quantifying individual variation in behaviour: mixed-effect modelling approaches[J]. Journal of Animal Ecology, 2013, 82(1): 39-54.
doi: 10.1111/1365-2656.12013 pmid: 23171297 |
[33] | SIGRIST F. Gaussian process boosting[J]. arXiv preprint arXiv:200402653, 2020. |
[34] | 杨迁, 王雁林, 马园园. 2001—2019年中国地质灾害分布规律及引发因素分析[J]. 地质灾害与环境保护, 2020, 31(4): 43-48. |
[35] | REICHENBACH P, ROSSI M, MALAMUD B, et al. A review of statistically-based landslide susceptibility models[J]. Earth-Science Reviews, 2018: S001282 5217305652. |
[36] | PELLICANI R, VAN WESTEN C J, SPILOTRO G. Assessing landslide exposure in areas with limited landslide information[J]. Landslides, 2014, 11(3): 463-480. |
[37] | LIN Q, LIMA P, STEGER S, et al. National-scale data-driven rainfall induced landslide susceptibility mapping for China by accounting for incomplete landslide data[J]. Geoscience Frontiers, 2021, 12(6): 101248. |
[38] |
YANG Y, YANG J, XU C, et al. Local-scale landslide susceptibility mapping using the B-GeoSVC model[J]. Landslides, 2019, 16(7): 1301-1312.
doi: 10.1007/s10346-019-01174-y |
[39] | LUO W, LIU C C. Innovative landslide susceptibility mapping supported by geomorphon and geographical detector methods[J]. Landslides, 2018, 15(3): 465-474. |
[40] | 汪潮. 滇西地区花岗岩风化层滑坡的形成条件及防治对策研究[D]. 昆明: 昆明理工大学, 2016. |
[41] | POURGHASEMI H R, ROSSI M. Landslide susceptibility modeling in a landslide prone area in Mazandarn Province, north of Iran: a comparison between GLM, GAM, MARS, and M-AHP methods[J]. Theoretical and Applied Climatology, 2017, 130(1): 609-633. |
[42] | 周玉龙. 融入时序InSAR形变的毛尔盖库区滑坡易发性评价研究[D]. 成都: 成都理工大学, 2020. |
[43] | FARR T G, KOBRICK M. Shuttle Radar Topography Mission produces a wealth of data[J]. Eos, Transactions American Geophysical Union, 2000, 81(48): 583-585. |
[44] | 周鑫. 河南省渑池县地质灾害发育特征及形成条件研究[J]. 华北自然资源, 2020, 96(3): 107-109. |
[45] | 白志刚, 刘启蒙, 刘瑜. 基于熵指数与随机森林模型的滑坡易发性评价[J]. 人民长江, 2022, 53(10): 95-102. |
[46] | 蒋万钰. 基于贝叶斯概率的降雨数据稀缺山区滑坡预警模型研究[D]. 兰州: 兰州大学, 2022. |
[47] | TRABUCCO A, ZOMER R. Global High-Resolution Soil-Water Balance[J]. Figshare Fileset, 2019, 10: m9. |
[48] | HARTMANN J, MOOSDORF N. The new global lithological map database GLiM: A representation of rock properties at the Earth surface[J]. Geochemistry, Geophysics, Geosystems, 2012, 13(12): 1-37. |
[49] | DU J, GLADE T, WOLDAI T, et al. Landslide susceptibility assessment based on an incomplete landslide inventory in the Jilong Valley, Tibet, Chinese Himalayas[J]. Engineering Geology, 2020, 270: 105572. |
[50] | SUN D, SHI S, WEN H, et al. A hybrid optimization method of factor screening predicated on GeoDetector and Random Forest for Landslide Susceptibility Mapping[J]. Geomorphology, 2021, 379: 107623. |
[51] | KE G, MENG Q, FINLEY T, et al. Lightgbm: A highly efficient gradient boosting decision tree[J]. Advances in neural information processing systems, 2017: 3149-3157. |
[52] | 赵泽园, 罗菲. 基于LightGBM模型的区域滑坡危险性评价研究[J]. 内蒙古煤炭经济, 2020, 298(5): 48-49. |
[53] | SZKLO M, NIETO F J. Epidemiology: beyond the basics[M]. American Journal of Epidemiology, 2001, 153(8): 821-822. |
[54] | SIGRIST F. Latent Gaussian model boosting[J]. arXiv preprint arXiv:210508966, 2021. |
[55] | BRENNING A. Spatial cross-validation and bootstrap for the assessment of prediction rules in remote sensing: The R package sperrorest[C]. proceedings of the 2012 IEEE international geoscience and remote sensing symposium, 2012: 5362-5375. |
[56] | BUITINCK L, LOUPPE G, BLONDEL M, et al. API design for machine learning software: experiences from the scikit-learn project[J]. arXiv preprint arXiv:13090238, 2013. |
[57] | 王伟, 袁雯宇, 邹丽芳, 等. 基于滑坡敏感性评价的库区水动力型滑坡区域综合预警研究[J]. 岩石力学与工程学报, 2022, 41(3): 479-491. |
[58] | MANDAL K, SAHA S, MANDAL S. Applying deep learning and benchmark machine learning algorithms for landslide susceptibility modelling in Rorachu river basin of Sikkim Himalaya, India[J]. Geoscience Frontiers, 2021, 12(5): 101203. |
[59] | KORUP O, STOLLE A. Landslide prediction from machine learning[J]. Geology today, 2014, 30(1): 26-33. |
[60] | CHEN W, CHAI H, SUN X, et al. A GIS-based comparative study of frequency ratio, statistical index and weights-of-evidence models in landslide susceptibility mapping[J]. Arabian Journal of Geosciences, 2016, 9(3): 1-16. |
[61] | PETSCHKO H, BELL R, GLADE T. Effectiveness of visually analyzing LiDAR DTM derivatives for earth and debris slide inventory mapping for statistical susceptibility modeling[J]. Landslides, 2016, 13(5): 857-872. |
[62] | PETSCHKO H, BRENNING A, BELL R, et al. Assessing the quality of landslide susceptibility maps-case study Lower Austria[J]. Natural Hazards and Earth System Sciences, 2014, 14(1): 95-118. |
[63] | STEGER S, BRENNING A, BELL R, et al. The propagation of inventory-based positional errors into statistical landslide susceptibility models[J]. Natural Hazards and Earth System Sciences, 2016, 16(12): 2729-2745. |
[64] | YOUSSEF A M, POURGHASEMI H R. Landslide susceptibility mapping using machine learning algorithms and comparison of their performance at Abha Basin, Asir Region, Saudi Arabia[J]. Geoscience Frontiers, 2021, 12(2): 639-655. |
[65] | LIU L, LI S, LI X, et al. An integrated approach for landslide susceptibility mapping by considering spatial correlation and fractal distribution of clustered landslide data[J]. Landslides, 2019, 16(4): 715-728. |
[1] | CHEN Yubin, HONG Ye, CUI Wenjuan, HUANG Minyi, ZHANG Jinyu. A Study on Multidimensional Data-Driven Commodity Demand Forecasting [J]. Frontiers of Data and Computing, 2024, 6(5): 169-177. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||