[1] |
朱婧, 孙新章, 何正. SDGs框架下中国可持续发展评价指标研究[J]. 中国人口·资源与环境, 2018, 28(12): 9-18.
|
[2] |
吴吉东, 李宁, 周扬, 等. 灾害恢复度量框架——Katrina飓风灾后恢复应用案例[J]. 自然灾害学报, 2013, 22(4): 58-64.
|
[3] |
张磊, 吴彬卓, 滕舟斌. 自然灾害风险防控和应急救援平台构建与实践——以浙江省为例[J]. 中国地质灾害与防治学报, 2022, 33(4): 134-142.
|
[4] |
ARIAS P, BELLOUIN N, COPPOLA E, et al. Climate change 2021: The physical science basis. contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change[M]. Cambridge: Cambridge university press, 2021:33-144.
|
[5] |
张太刚, 王伟财, 高坛光, 等. 亚洲高山区冰湖溃决洪水事件回顾[J]. 冰川冻土, 2021, 43: 1673-1692.
doi: 10.7522/j.issn.1000-0240.2021.0066
|
[6] |
王世金, 魏彦强, 牛春华, 等. 青藏高原多灾种自然灾害综合风险管理[J]. 冰川冻土, 2021, 43: 1848-1860.
doi: 10.7522/j.issn.1000-0240.2021.0116
|
[7] |
王欣, 方成勇, 唐小川, 等. 泸定Ms 6.8级地震诱发滑坡应急评价研究[J]. 武汉大学学报(信息科学版), 2023, 48(1): 25-35.
|
[8] |
邱芹军, 吴亮, 马凯, 等. 面向灾害应急响应的地质灾害链知识图谱构建方法[J]. 地球科学, 2022: 1-22.
|
[9] |
李一行, 刘兴业. 自然灾害防治综合立法研究:定位、理念与制度[J]. 灾害学, 2019, 34(4): 172-175.
|
[10] |
张萍. 气象灾害数据互联共享的国外经验及其启示[J]. 农村经济与科技, 2021, 32: 15-18.
|
[11] |
LI D, ZENG L, CHEN N, et al. A framework design for the Chinese National Disaster Reduction System of Systems (CNDRSS)[J]. International Journal of Digital Earth, 2014, 7(1): 68-87.
doi: 10.1080/17538947.2013.783634
|
[12] |
XIAO X, ZHANG T, ZHONG X, et al. Support vector regression snow-depth retrieval algorithm using passive microwave remote sensing data[J]. Remote Sensing of Environment, 2018, 210: 48-64.
doi: 10.1016/j.rse.2018.03.008
|
[13] |
SCHAEFER K, ZHANG T, BRUHWILER L, et al. Amount and timing of permafrost carbon release in response to climate warming[J]. Tellus B: Chemical and Physical Meteorology, 2011, 63(2): 168-180.
|
[14] |
DECONTO R M, GALEOTTI S, PAGANI M, et al. Past extreme warming events linked to massive carbon release from thawing permafrost[J]. Nature, 2012, 484(7392): 87-91.
doi: 10.1038/nature10929
|
[15] |
SENEVIRATNE S, NICHOLLS N, EASTERLING D, et al. Changes in climate extremes and their impacts on the natural physical environment[M]. Cambridge: Cambridge university press, 2012:109-230.
|
[16] |
张耀南. 中巴经济走廊专题卷首语[J]. 中国科学数据(中英文网络版), 2019, 4: 5-7.
|
[17] |
李保俊, 袁艺, 邹铭, 等. 中国自然灾害应急管理研究进展与对策[J]. 自然灾害学报, 2004, 4: 18-23.
|
[18] |
胡俊锋, 张宝军, 范一大, 等. 中国综合防灾减灾标准化现状与发展思路[J]. 生态学杂志, 2014, 33: 235-241.
|
[19] |
杨马陵, 续新民. 我国灾害现代管理模式的构想[J]. 灾害学, 2004, 4: 85-90.
|
[20] |
蒋通, 朱科宁, 宋晓星, 等. 基于GIS的县城城区抗震防灾规划的编制1[J]. 震灾防御技术, 2007, 3: 305-316.
|
[21] |
HIROHARA Y, ISHIDA T, UCHIDA N, et al. Proposal of a disaster information cloud system for disaster prevention and reduction[C]// proceedings of the 2017 31st International Conference on Advanced Information Networking and Applications Workshops (WAINA), IEEE, 2017:664-667.
|
[22] |
PENG G, WEN Y, LI Y, et al. Construction of collaborative mapping engine for dynamic disaster and emergency response[J]. Natural Hazards, 2018, 90(1): 217-236.
doi: 10.1007/s11069-017-3045-6
|
[23] |
张耀南. 数据工程学建设思考与实践[J]. 数据与计算发展前沿, 2022, 4: 5-19.
|
[24] |
KARGEL J S, LEONARD G J, SHUGAR D H, et al. Geomorphic and geologic controls of geohazards induced by Nepal’s 2015 Gorkha earthquake[J]. Science, 2016, 351(6269): aac8353.
doi: 10.1126/science.aac8353
|
[25] |
LONG Y, ZHANG Y, YANG D, et al. Implementation and application of a distributed hydrological model using a component-based approach[J]. Environmental Modelling & Software, 2016, 80: 245-258.
|
[26] |
LIMA P, STEGER S, GLADE T. Counteracting flawed landslide data in statistically based landslide susceptibility modelling for very large areas: a national-scale assessment for Austria[J]. Landslides, 2021, 18(11): 3531-3546.
doi: 10.1007/s10346-021-01693-7
|
[27] |
LIN Q, LIMA P, STEGER S, et al. National-scale data-driven rainfall induced landslide susceptibility mapping for China by accounting for incomplete landslide data[J]. Geoscience Frontiers, 2021, 12(6): 101248.
doi: 10.1016/j.gsf.2021.101248
|
[28] |
SIGRIST F. Gaussian process boosting[J]. ArXiv Preprint ArXiv, 2020.
|
[29] |
HE Y, ZHANG Y. Comparison of three mixed-effects models for mass movement susceptibility mapping based on incomplete inventory in China[J]. Remote Sensing, 2022, 14(23): 6068.
doi: 10.3390/rs14236068
|
[30] |
CAPPABIANCA F, BARBOLINI M, NATALE L. Snow avalanche risk assessment and mapping: A new method based on a combination of statistical analysis, avalanche dynamics simulation and empirically-based vulnerability relations integrated in a GIS platform[J]. Cold Regions Science and Technology, 2008, 54(3): 193-205.
doi: 10.1016/j.coldregions.2008.06.005
|
[31] |
HAO J, ZHANG Z, LI L. Timing and identification of potential snow avalanche types: a case study of the central Tianshan Mountains[J]. Landslides, 2021, 18: 3845-3856.
doi: 10.1007/s10346-021-01766-7
|
[32] |
HAO J, HUANG F, LIU Y, et al. Avalanche activity and characteristics of its triggering factors in the western Tianshan Mountains, China[J]. Journal of Mountain Science, 2018, 15(7): 1397-1411.
doi: 10.1007/s11629-018-4941-2
|
[33] |
YU C, HUO J, LI C, et al. Landslide displacement prediction based on a two-stage combined deep learning model under small sample condition[J]. Remote Sensing, 2022, 14(15): 3732.
doi: 10.3390/rs14153732
|