[1] |
陈浮, 于昊辰, 卞正富, 等. 碳中和愿景下煤炭行业发展的危机与应对[J]. 煤炭学报, 2021, 46(6): 1808-1820.
|
[2] |
王晓磊, 陈贵锋, 李文博, 等. 双碳背景下煤炭清洁高效利用方向构建[J]. 煤质技术, 2021, 36(6):1-5.
|
[3] |
CHEN Y, QIN Y, LI Z, SHI Q, et al. Differences in desorption rate and composition of desorbed gases between undeformed and mylonitic coals in the zhina coalfield, southwest china[J]. Fuel, 2019, 239: 905-916.
doi: 10.1016/j.fuel.2018.11.085
|
[4] |
杨兆中, 杨苏, 张健, 等. 800m以深直井煤储层压裂特征分析[J]. 煤炭学报, 2016, 41(1): 100-104.
|
[5] |
宋孝忠. 烟煤显微组分组图像自动识别技术研究及应用[D]. 北京: 煤炭科学研究总院, 2020.
|
[6] |
MLYNARCZUK M, SKIBA M. The application of artificial intelligence for the identification of the maceral groups and mineral components of coal[J]. Computers Geosci, 2017, 103: 133-141.
doi: 10.1016/j.cageo.2017.03.011
|
[7] |
WANG H, LEI M, CHEN Y, LI M, ZOU L. Intelligent identification of maceral components of coal based on image segmentation and classification[J]. Appl Sci, 2019, 9(16): 3245-3260.
doi: 10.3390/app9163245
|
[8] |
SKIBA M, MLYNARCZUK M. Identification of macerals of the inertinite group using neural classifiers, based on selected textural features[J]. Arch Min Sci, 2018, 63(4): 827-837.
|
[9] |
赵伟昱, 张宏海, 仲波. 基于深度学习的遥感影像地块分割方法[J]. 数据与计算发展前沿, 2021, 3(2):133-141.
|
[10] |
LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]// International Conference on Medical Image Computing and Computer-assisted Intervention. Boston, USA, New York: IEEE, 2015: 3431-3440.
|
[11] |
RONNEBERGER O, FISCHER P, BROX T. U-net: Convolutional networks for biomedical image segmentation[C]// Proceedings of Medical Image Computing and Computer-assisted Intervention, Singapore: Springer, Cham, 2015: 234-241.
|
[12] |
CHEN L C, PAPANDREOU G, KOKKINOS I, et al. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs[J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 40(4): 834-848.
doi: 10.1109/TPAMI.2017.2699184
|
[13] |
KONG X, SUN G, WU Q, et al. Hybrid pyramid u-net model for brain tumor segmentation[C]// International Conference on Intelligent Information Processing, Barcelona, Spain, Singapore: Springer, 2018:346-355.
|
[14] |
LI X, ZHONG Z, WU J, et al. Expectation-maximization attention networks for semantic segmentation[C]// Proceeding of the International Conference on Computer Vision, Seoul, Korea, New York: IEEE, 2019: 9167-9176.
|
[15] |
ZHANG H, ZHANG H, WANG C, et al. Co-occurrent features in semantic segmentation[C]// Proceeding of the Conference on Computer Vision and Pattern Recognition, Seoul, Korea, New York: IEEE, 2019: 548-557.
|
[16] |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, New York: IEEE, 2018: 7132-7141.
|
[17] |
WOO S, PARK J, LEE J Y, et al. Cbam: Convolutional block attention module[C]// Proceedings of the European conference on computer vision, Munich, Germany, Singapore: Springer, 2018: 3-19.
|
[18] |
RUNDO L, HAN C, NAGANO Y, et al. USE-Net: Incorporating Squeeze-and-Excitation blocks into UNet for prostate zonal segmentation of multi-institutional MRI datasets[J]. Neurocomputing, 2019, 365: 31-43.
doi: 10.1016/j.neucom.2019.07.006
|
[19] |
GU Z, CHENG J, FU H, et al. Ce-net: Context encoder network for 2d medical image segmentation[J]. IEEE transactions on medical imaging, 2019, 38(10): 2281-2292.
doi: 10.1109/TMI.2019.2903562
pmid: 30843824
|
[20] |
CHEN L C, PAPANDREOU G, KOKKINOS I, et al. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFS[J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 40(4): 834-848.
doi: 10.1109/TPAMI.2017.2699184
|
[21] |
MILLETARI F, NAYAB N, AHMADI S A. V-net: Fully convolutional neural networks for volumetric medical image segmentation[C]// Proceedings of 3D Vision, California, USA, New York: IEEE, 2016: 565-571.
|
[22] |
ZHU W, HUANG Y, ZENG L, et al. Anatomynet: Deep learning for fast and fully automated whole-volume segmentation of head and neck anatomy[J]. Med Phys, 2019, 46(2): 576-89.
doi: 10.1002/mp.13300
pmid: 30480818
|
[23] |
LI X, WANG W, HU X, et al. Generalized Focal Loss V2: Learning Reliable Localization Quality Estimation for Dense Object Detection[C]// Proceedings of Computer Vision and Pattern Recognition, Nashville, USA, New York: IEEE, 2021: 11627-11636.
|
[24] |
WILSON M A, PUGMIRE R J, KARAS J, et al. Carbon distribution in coals and coal macerals by cross polarization magic angle spinning carbon-13 nuclear magnetic resonance spectrometry[J]. Analytical Chemistry, 56(6): 933-943.
doi: 10.1021/ac00270a018
|
[25] |
CSURKA G, LARLUS D, PERRONNIN F. What is a good evaluation measure for semantic segmentation[C]// Proceeding of British Machine Vision Conference, London, England, London: the British Machine Vision Conference, 2013: 10-5244.
|
[26] |
LONG J, SHELHAMER E, DARRELL T. Fully Convolutional Networks for Semantic Segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 39(4): 640-651.
doi: 10.1109/TPAMI.2016.2572683
|
[27] |
BADRINARAYANAN V, HANDA A, CIPOLLA R. Segnet: A deep convolutional encoder-decoder architecture for robust semantic pixel-wise labelling[J]. arXiv preprint arXiv: 1505.07293, 2015. https://arxiv.org/abs/1505.07293.
|
[28] |
XU J, LIU J, ZHANG X, LING P, et al. Chemical imaging of coal in micro-scale with raman mapping technology[J]. Fuel, 2020, 264: 116826.
doi: 10.1016/j.fuel.2019.116826
|