Frontiers of Data and Computing ›› 2022, Vol. 4 ›› Issue (6): 129-144.
CSTR: 32002.14.jfdc.CN10-1649/TP.2022.06.012
doi: 10.11871/jfdc.issn.2096-742X.2022.06.012
• Technology and Application • Previous Articles
Received:
2021-12-07
Online:
2022-12-20
Published:
2022-12-20
Contact:
DAI Jian
E-mail:yangtao@lntu.edu.cn;2663069519@qq.com
YANG Tao,DAI Jian. Improvement of the Seagull Algorithm and Its Application in Engineering Design Optimization[J]. Frontiers of Data and Computing, 2022, 4(6): 129-144, https://cstr.cn/32002.14.jfdc.CN10-1649/TP.2022.06.012.
Table 1
Test function"
测试函数 | 维度 | 搜索空间 | 最优值 | 测试函数类型 |
---|---|---|---|---|
${{f}_{1}}=\underset{i=1}{\overset{n}{\mathop \sum }}\,x_{i}^{2}$ | 30 | [-100,100] | 0 | 单模态 |
${{f}_{2}}=\underset{i=1}{\overset{n}{\mathop \sum }}\,\left| {{x}_{i}} \right|+\underset{i=1}{\overset{n}{\mathop \prod }}\,\left| {{x}_{i}} \right|$ | 30 | [-10,0] | 0 | 单模态 |
${{f}_{3}}=\underset{i=1}{\overset{n}{\mathop \sum }}\,{{\left( \underset{j=1}{\overset{i}{\mathop \sum }}\,{{x}_{j}} \right)}^{2}}$ | 30 | [-100,100] | 0 | 单模态 |
${{f}_{4}}=max\left\{ \left| {{x}_{i}} \right|,1\le i\le n \right\}$ | 30 | [-100,100] | 0 | 单模态 |
${{f}_{5}}=\underset{i=1}{\overset{n}{\mathop \sum }}\,ix_{i}^{4}+random\left[ 0,1 \right)$ | 30 | [-1.28,1.28] | 0 | 单模态 |
${{f}_{6}}=\underset{i=1}{\overset{n}{\mathop \sum }}\,-{{x}_{i}}\sin \left( \sqrt{\left| {{x}_{i}} \right|} \right)$ | 30 | [-500,500] | -418.98×Dimn | 多模态 |
${{f}_{7}}=\underset{i=1}{\overset{n}{\mathop \sum }}\,\left[ x_{i}^{2}-10\cos \left( 2\pi {{x}_{i}} \right)+10 \right]$ | 30 | [-5.12,5.12] | 0 | 多模态 |
${{f}_{8}}=e+20-20exp\left( -0.2\sqrt{\frac{1}{n}\underset{i=1}{\overset{n}{\mathop \sum }}\,x_{i}^{2}} \right)-exp\left( \frac{1}{n}\underset{i=1}{\overset{n}{\mathop \sum }}\,\cos 2\pi {{x}_{i}} \right)$ | 30 | [-32,32] | 0 | 多模态 |
${{f}_{9}}=\frac{1}{4000}\underset{i=1}{\overset{n}{\mathop \sum }}\,x_{i}^{2}-\underset{i=1}{\overset{n}{\mathop \prod }}\,\cos \left( \frac{{{x}_{i}}}{\sqrt{i}} \right)+1$ | 30 | [-600,600] | 0 | 多模态 |
Table 2
Comparison of optimization results of various algorithms"
测试函数 | 算法 | 最优值 | 最差值 | 平均值 | 标准差 |
---|---|---|---|---|---|
f1 | I-SOA | 1.59E-44 | 8.88E-41 | 7.58767E-42 | 1.78334E-41 |
SOA | 2.24E-11 | 4.05E-06 | 5.09355E-07 | 9.56157E-07 | |
PSO | 4.44E-04 | 2.44E-02 | 0.005362221 | 0.004785459 | |
GA | 1.82E+02 | 7.06E+03 | 1899.030632 | 1538.904477 | |
f2 | I-SOA | 1.37E-28 | 2.18E-26 | 5.53778E-27 | 5.71373E-27 |
SOA | 1.34E-08 | 2.10E-06 | 3.58324E-07 | 4.38396E-07 | |
PSO | 2.27E-02 | 1.47E-01 | 0.065551862 | 0.031852805 | |
GA | 1.47E+01 | 5.03E+01 | 27.71107462 | 9.175842817 | |
f3 | I-SOA | 1.32E-11 | 1.84E-07 | 1.58772E-08 | 3.61107E-08 |
SOA | 1.64E+00 | 1.86E+03 | 190.6544601 | 336.4194883 | |
PSO | 2.64E+01 | 1.61E+02 | 81.75993426 | 29.12498642 | |
GA | 1.38E+04 | 4.60E+04 | 27217.60822 | 7318.158103 | |
f4 | I-SOA | 9.68E-11 | 8.68E-09 | 1.46604E-09 | 2.10226E-09 |
SOA | 1.71E-02 | 4.58E+00 | 0.510128247 | 0.881138441 | |
PSO | 7.50E-01 | 2.10E+00 | 1.258233835 | 0.271775249 | |
GA | 3.25E+01 | 8.18E+01 | 54.37515244 | 10.53775311 | |
f5 | I-SOA | 5.97E-05 | 1.87E-03 | 0.000674945 | 0.000536371 |
SOA | 6.53E-03 | 1.32E-01 | 0.047905832 | 0.033455955 | |
PSO | 7.58E-02 | 4.03E-01 | 0.202157664 | 0.086749957 | |
GA | 3.21E-02 | 4.93E-01 | 0.123260057 | 0.087433248 | |
f6 | I-SOA | -9.93E+03 | -7.68E+03 | -9100.77899 | 524.5781804 |
SOA | -4.70E+03 | -3.65E+03 | -4081.974185 | 234.6872121 | |
PSO | -8.18E+03 | -2.82E+03 | -5943.56994 | 1543.342753 | |
GA | -3.33E+03 | -1.25E+03 | -2254.340174 | 500.2642696 | |
f7 | I-SOA | 0.00E+00 | 0.00E+00 | 0 | 0 |
SOA | 1.07E-09 | 3.35E-03 | 0.000112695 | 0.000601548 | |
PSO | 2.83E+01 | 7.96E+01 | 53.67875334 | 12.60401362 | |
GA | 1.41E+02 | 2.67E+02 | 186.6718345 | 29.41262777 | |
f8 | I-SOA | 8.88E-16 | 7.99E-15 | 4.44089E-15 | 9.17307E-16 |
SOA | 1.57E-06 | 6.48E-04 | 6.0513E-05 | 0.000117366 | |
PSO | 1.61E-02 | 1.08E-01 | 0.047530746 | 0.026267322 | |
GA | 1.82E+01 | 2.04E+01 | 19.41380797 | 0.482471364 | |
f9 | I-SOA | 0.00E+00 | 3.69E-02 | 0.004924319 | 0.008916789 |
SOA | 4.88E-09 | 4.42E-01 | 0.034136721 | 0.084645165 | |
PSO | 7.34E-04 | 1.61E-01 | 0.021110466 | 0.029915834 | |
GA | 2.32E+00 | 4.64E+01 | 16.72956884 | 11.74057554 |
Table 4
Comparison with the optimal values of other algorithms in literature [22] for solving pressure vessel design problem"
算法 | TS | Th | R | L | 最优值 |
---|---|---|---|---|---|
Improved HS | 1.125000 | 0.625000 | 58.290150 | 43.692680 | 7197.7300 |
GSA | 1.125000 | 0.625000 | 55.988659 | 84.454202 | 8538.8359 |
PSO(He and Wang) | 0.812500 | 0.437500 | 42.091266 | 76.746500 | 6061.0777 |
GA(Coello) | 0.812500 | 0.434500 | 40.323900 | 200.000000 | 6288.7445 |
GA(Coello and Montes) | 0.812500 | 0.437500 | 40.097398 | 176.654050 | 6059.9463 |
GA(Deb and Gene) | 0.937500 | 0.500000 | 48.329000 | 48.329000 | 6410.3811 |
ES(Montes and Coello) | 0.812500 | 0.437500 | 42.098087 | 176.640518 | 6059.7456 |
DE(Huang et al.) | 0.812500 | 0.437500 | 42.098411 | 176.637690 | 6059.7340 |
ACO(Kaveh and Talataheri) | 0.812500 | 0.437500 | 42.103624 | 176.572656 | 6059.0888 |
Lagrangian multiplier | 1.125000 | 0.625000 | 58.291000 | 43.690000 | 7198.0428 |
Branch-bound (San dgren) | 1.125000 | 0.625000 | 47.700000 | 117.701000 | 8129.1036 |
MGWO-III | 0.778197 | 0.384675 | 40.315493 | 199.959320 | 5884.0616 |
MGWO-II | 0.778403 | 0.384823 | 40.331283 | 199.749890 | 5884.0810 |
MGWO-I | 0.778181 | 0.384821 | 40.318142 | 199.931940 | 5884.2166 |
GWO | 0.778535 | 0.384960 | 40.337793 | 199.650290 | 5884.3689 |
SCA | 0.817577 | 0.417932 | 41.749390 | 183.572700 | 6137.3724 |
MVO | 0.845719 | 0.418564 | 43.816270 | 156.381640 | 6011.5148 |
PSO | 0.778961 | 0.384683 | 40.320913 | 200.000000 | 5891.3879 |
ERDSSA | 0.778206 | 0.384674 | 40.321534 | 199.976268 | 5885.4771 |
SOA | 0.783485 | 0.387615 | 40.582386 | 196.403346 | 5897.8055 |
I-SOA | 0.778189 | 0.384660 | 40.320368 | 199.990024 | 5885.4245 |
Table 6
Comparison with the optimal values of other algorithms in literature [22] for solving three bar truss design problem"
算法 | x1 | x2 | 最优值 |
---|---|---|---|
GOA | 0.788897 | 0.407619 | 263.895881 |
ALO | 0.788662 | 0.408283 | 263.895843 |
DEDS | 0.788675 | 0.408248 | 263.895843 |
PSO-DE | 0.788675 | 0.408248 | 263.895843 |
MBA | 0.788565 | 0.408559 | 263.895852 |
MGWO-III | 0.788693 | 0.408199 | 263.895860 |
MGWO-II | 0.788861 | 0.407724 | 263.895880 |
MGWO-I | 0.788561 | 0.408572 | 263.895890 |
GWO | 0.788409 | 0.409003 | 263.895920 |
SCA | 0.789068 | 0.407162 | 263.898380 |
MVO | 0.788993 | 0.407351 | 263.895940 |
PSO | 0.781224 | 0.432548 | 264.218270 |
GSA | 0.777622 | 0.448853 | 264.829960 |
CS | 0.78867 | 0.40902 | 263.97160 |
Tsa | 0.788 | 0.408 | 263.680 |
Ray and Sain | 0.795 | 0.395 | 264.300 |
ERDSSA | 0.788690 | 0.408210 | 263.895844 |
SOA | 0.788931 | 0.407524 | 263.896127 |
I-SOA | 0.788722 | 0.408113 | 263.895846 |
Table 7
Comparison of optimization results of other algorithms in literature [24] for solving tension spring design problem"
算法 | 最优值 | 平均值 | 最差值 | 标准差 |
---|---|---|---|---|
CDE | 0.0126702 | 0.0126703 | 0.0126790 | 2.70E-05 |
CPSO | 0.0126747 | 0.0127300 | 0.0129240 | 5.20E-04 |
AATM | 0.0126683 | 0.0127081 | 0.0128614 | 4.50E-05 |
IFA | 0.0126658 | 0.0127060 | 0.0128120 | 4.37E-05 |
SOA | 0.0126765 | 0.0129198 | 0.0131854 | 1.17E-04 |
I-SOA | 0.0126654 | 0.0126901 | 0.0127188 | 1.72E-05 |
[1] |
Mirjalili S, Mirjalili S M, Lewis A. Grey Wolf Optimizer[J]. Advances in Engineering Software, 2014, 69(3):46-61.
doi: 10.1016/j.advengsoft.2013.12.007 |
[2] | Xue J, Shen B. A novel swarm intelligence optimization approach: sparrow search algorithm[J]. Systems Science & Control Engineering An Open Access Journal, 2020, 8(1):22-34. |
[3] |
Shahrzad, Saremi, Seyedali, et al. Grasshopper Optim-isation Algorithm: Theory and application[J]. Advances in Engineering Software, 2017, 105(1):30-47.
doi: 10.1016/j.advengsoft.2017.01.004 |
[4] | Kennedy J, Eberhart R C. Particle Swarm Optimization// Proc of the IEEE International Conference on Neural Net-works. Perth,Australia, 1995: 1942-1948. |
[5] | Seyedali Mirjalili, Andrew Lewis. The Whale Optim-ization Algorithm[J]. Advances in Engineering Sof-tware, 2016, 95:51-67. |
[6] |
Mirjalili, Seyedali. The Ant Lion Optimizer[J]. Advances in Engineering Software, 2015, 83:80-98.
doi: 10.1016/j.advengsoft.2015.01.010 |
[7] | Dhiman G, Kumar V. Seagull optimization algorithm: Theory and its applications for large-scale industrial engin-eering problems[J]. Knowledge-Based Systems, 2019, 165 (FEB.1):169-196. |
[8] | 毛清华, 王迎港. 融合改进Logistics混沌和正弦余弦算子的自适应t分布海鸥算法[J/OL]. 小型微型计算机系统:1-9.[2021-12-14]. http://kns.cnki.net/kcms/detail/21.1106.TP.20211019.1549.006.html. |
[9] | 陈忠云, 张达敏, 辛梓芸. 正弦余弦算法的樽海鞘群算法[J]. 计算机应用与软件, 2020, 37(09):209-214. |
[10] | 尹德鑫, 张达敏, 蔡朋宸, 秦维娜. 基于鸽群算法的Fuch混沌蝗虫算法[J]. 计算机应用研究, 2021, 38(07):2013-2017. |
[11] | 肖亚宁, 孙雪, 李三平, 姚金言. 基于混沌精英黏菌算法的无刷直流电机转速控制[J]. 科学技术与工程, 2021, 21(28):12130-12138. |
[12] | 马驰, 曾国辉, 黄勃, 刘瑾. 融合混沌对立和分组学习的海洋捕食者算法[J/OL]. 计算机工程与应用:1-14.[2021-12-14]. http://kns.cnki.net/kcms/detail/11.2127.TP.20210730.1554.011.html. |
[13] |
Cao Y, Li Y, Zhang G, et al. Experimental modeling of PEM fuel cells using a new improved seagull optim-ization algorithm[J]. Energy Reports, 2019, 5:1616-1625.
doi: 10.1016/j.egyr.2019.11.013 |
[14] | 秦维娜, 张达敏, 尹德鑫, 蔡朋宸. 一种基于非线性惯性权重的海鸥优化算法[J/OL]. 小型微型计算机系统:1-8.[2021-12-14]. http://kns.cnki.net/kcms/detail/21.1106.TP.20210330.1445.028.html. |
[15] |
Chen X, Li Y, Zhang Y, et al. A Novel Hybrid Model Bas-ed on An Improved Seagull Optimization Algorithm for Short-Term Wind Speed Forecasting[J]. Processes, 2021, 9(2):387.
doi: 10.3390/pr9020387 |
[16] | 孙文捷, 张惠珍, 张健, 赵坤. 基于Fuch映射的混沌蝙蝠算法[J]. 上海理工大学学报, 2014, 36(01):26-30. |
[17] | 张超. 一种精英反向学习的花授粉算法[J]. 西安工程大学学报, 2017, 31(06):847-856. |
[18] |
Xu T, Yan H, Bai Y. Air Pollutant Analysis and AQI Prediction Based on GRA and Improved SOA-SVR by Considering COVID-19[J]. Atmosphere, 2021, 12(3): 336.
doi: 10.3390/atmos12030336 |
[19] |
Hu A, Razmjooy N. Brain tumor diagnosis based on met-aheuristics and deep learning[J]. International Journal of Imaging Systems and Technology, 2020, 1:1-13.
doi: 10.1002/ima.1850010102 |
[20] | 李阳, 李维刚, 赵云涛, 刘翱. 基于莱维飞行和随机游动策略的灰狼算法[J]. 计算机科学, 2020, 47(08):291-296. |
[21] | 何小龙, 张刚, 陈跃华, 杨尚志. 融合Lévy飞行和精英反向学习的WOA-SVM多分类算法[J]. 计算机应用研究, 2021, 38(12):3640-3645. |
[22] | 刘景森, 袁蒙蒙, 李煜. 基于改进樽海鞘群算法求解工程优化设计问题[J]. 系统仿真学报, 2021, 33(04):854-866. |
[23] | 汪逸晖, 高亮. 乌鸦搜索算法的改进及其在工程约束优化问题中的应用[J]. 计算机集成制造系统, 2021, 27(07):1871-1883. |
[24] | 龙文, 蔡绍洪, 焦建军, 陈义雄, 黄亚飞. 求解约束优化问题的萤火虫算法及其工程应用[J]. 中南大学学报(自然科学版), 2015, 46(04):1260-1267. |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||