[1] |
Blei D M, Ng A Y, Jordan M I. Latent dirichlet alloca-tion[J]. the Journal of machine Learning research, 2003, 3: 993-1022.
|
[2] |
Xue J, Chen J, Chen C, et al. Public discourse and sen-timent during the COVID 19 pandemic: Using Latent Dirichlet Allocation for topic modeling on Twitter[J]. PloS one, 2020, 15(9): e0239441.
doi: 10.1371/journal.pone.0239441
|
[3] |
Tago K, Jin Q. Influence analysis of emotional behaviors and user relationships based on Twitter data[J]. Tsinghua Science and Technology, 2018, 23(1): 104-113.
doi: 10.26599/TST.2018.9010012
|
[4] |
吴彦文, 黄凯, 王馨悦, 林娴. 一种融合主题模型的短文本情感分类方法[J]. 小型微型计算机系统, 2019, 40(10):2082-2086.
|
[5] |
Shams M, Baraani-Dastjerdi A. Enriched LDA (ELDA): Combination of latent Dirichlet allocation with word co-occurrence analysis for aspect extraction[J]. Expert Systems with Applications, 2017, 80: 136-146.
doi: 10.1016/j.eswa.2017.02.038
|
[6] |
孟仕林, 赵蕴龙, 关东海, 翟象平. 融合情感与语义信息的情感分析方法[J]. 计算机应用, 2019, 39(07):1931-1935.
|
[7] |
Tang D, Qin B, Feng X, et al. Effective LSTMs for targ-et-dependent sentiment classification[J]. arXiv preprint arXiv:1512.01100, 2015.
|
[8] |
Bahdanau D, Cho K, Bengio Y. Neural machine tran-slation by jointly learning to align and translate[J]. arXiv preprint arXiv:1409.0473, 2014.
|
[9] |
Li W, Liu P, Zhang Q, et al. An improved approach for text sentiment classification based on a deep neural net-work via a sentiment attention mechanism[J]. Future Internet, 2019, 11(4): 96.
doi: 10.3390/fi11040096
|
[10] |
Xie J, Chen B, Gu X, et al. Self-attention-based Bi-LSTM model for short text fine-grained sentiment classi-fication[J]. IEEE Access, 2019, 7: 180558-180570.
doi: 10.1109/ACCESS.2019.2957510
|
[11] |
Wang X, Chen G. Dependency-attention-based LSTM for target-dependent sentiment analysis[C]// Chinese National Conference on Social Media Processing. Springer, Sing-apore, 2017: 206-217.
|
[12] |
胡朝举, 梁宁. 基于深层注意力的LSTM的特定主题情感分析[J]. 计算机应用研究, 2019, 36(04):1075-1079.
|
[13] |
吴小华, 陈莉, 魏甜甜, 范婷婷. 基于Self-Attention和Bi-LSTM的中文短文本情感分析[J]. 中文信息学报, 2019, 33(06):100-107.
|
[14] |
陶志勇, 李小兵, 刘影, 刘晓芳. 基于双向长短时记忆网络的改进注意力短文本分类方法[J]. 数据分析与知识发现, 2019, 3(12):21-29.
|
[15] |
李磊, 吴旭辉, 刘继. 融合关键对象识别与深层自注意力的Bi-LSTM情感分析模型[J]. 小型微型计算机系统, 2021, 42(03):504-509.
|
[16] |
Ghanbari-Adivi F, Mosleh M. Text emotion detection in social networks using a novel ensemble classifier based on Parzen Tree Estimator (TPE)[J]. Neural Computing and Applications, 2019, 31(12): 8971-8983.
doi: 10.1007/s00521-019-04230-9
|
[17] |
Park H, Park T, Lee Y S. Partially collapsed Gibbs sampling for latent Dirichlet allocation[J]. Expert Systems with Applications, 2019, 131: 208-218.
doi: 10.1016/j.eswa.2019.04.028
|
[18] |
Sherstinsky A. Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network[J]. Physica D: Nonlinear Phenomena, 2020, 404: 132306.
doi: 10.1016/j.physd.2019.132306
|
[19] |
Al-Sabahi K, Zuping Z, Nadher M. A hierarchical stru-ctured self-attentive model for extractive document sum-marization (HSSAS)[J]. IEEE Access, 2018, 6: 24205- 24212.
doi: 10.1109/ACCESS.2018.2829199
|
[20] |
Li Q, Li S, Zhang S, et al. A review of text corpus-based tourism big data mining[J]. Applied Sciences, 2019, 9(16): 3300.
doi: 10.3390/app9163300
|
[21] |
Li L, Wang P, Yan J, et al. Real-world data medical kno-wledge graph: construction and applications[J]. Artificial intelligence in medicine, 2020, 103: 101817.
doi: 10.1016/j.artmed.2020.101817
|
[22] |
Dong Y, Fu Y, Wang L, et al. A sentiment analysis me-thod of capsule network based on BiLSTM[J]. IEEE Ac-cess, 2020, 8: 37014-37020.
|