Frontiers of Data and Computing ›› 2022, Vol. 4 ›› Issue (3): 3-18.
CSTR: 32002.14.jfdc.CN10-1649/TP.2022.03.001
doi: 10.11871/jfdc.issn.2096-742X.2022.03.001
• Special Issue: Advanced Intelligent Computing Platform and Application • Previous Articles Next Articles
LUO Jiexi(),LIU Shuai(),ZHANG Yuzhi(),LI Zhengdan(),SUN Yufei(),ZHANG Shenglin()
Received:
2022-02-06
Online:
2022-06-20
Published:
2022-06-20
Contact:
ZHANG Yuzhi
E-mail:thevolga@163.com;978951827@qq.com;zyz@nankai.edu.cn;lzd@nankai.edu.cn;yufei_sun@sina.com;zhangsl@nankai.edu.cn
LUO Jiexi,LIU Shuai,ZHANG Yuzhi,LI Zhengdan,SUN Yufei,ZHANG Shenglin. Online Educational Resources Recommendation System Based on Knowledge Graph Technology[J]. Frontiers of Data and Computing, 2022, 4(3): 3-18, https://cstr.cn/32002.14.jfdc.CN10-1649/TP.2022.03.001.
Table 1
Comparison of knowledge graph recommendation system methods"
分类 | 代表模型 | 特点 |
---|---|---|
基于连接的推荐 | HeteroMF SemRec FMG GraphLF | 高效率,可解释,但需手动设计元路径,信息高度依赖于连接模式 |
基于嵌入的推荐 | TransE TransH TransR DistMult | 将实体与关系映射为低维向量后进一步计算 |
基于混合推荐 | RippleNet KGCN(Knowledge Graph Convolutional Networks) KGAT(Knowledge Graph Attention Network) | 利用低维向量的计算挖掘图谱中的多跳关系 |
[1] |
Khanal S S, Prasad P W C, Alsadoon A, et al. A syste-matic review: machine learning based recommendation systems for e-learning[J]. Education and Information Technologies, 2020, 25(4): 2635-2664.
doi: 10.1007/s10639-019-10063-9 |
[2] |
Yu T, Li J, Yu Q, et al. Knowledge graph for TCM health preservation: Design, construction, and applications[J]. Artificial intelligence in medicine, 2017, 77(3): 48-52.
doi: 10.1016/j.artmed.2017.04.001 |
[3] | Cao Y, Wang X, He X, et al. Unifying knowledge graph learning and recommendation: Towards a better under-standing of user preferences[C]// The world wide web conference, 2019: 151-161. |
[4] | Rizun M. Knowledge Graph Application in Education: a Literature Review[J]. Acta Universitatis Lodziensis Folia oeconomica, 2019, 3(342):7-19. |
[5] | Huang X, Zhang J, Li D, et al. Knowledge graph embe-dding based question answering[C]// Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining, 2019: 105-113. |
[6] |
Ji S, Pan S, Cambria E, et al. A survey on knowledge graphs: Representation, acquisition, and applications[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 33(2): 494-514.
doi: 10.1109/TNNLS.2021.3070843 |
[7] | Zou X. A survey on application of knowledge graph[C]// Journal of Physics: Conference Series, IOP Publishing, 2020, 1487(1): 12-16. |
[8] | Ling T. Knowledge graph survey: representation, cons-truction, reasoning and knowledge hypergraph theory[J]. Journal of Computer Applications, 2021, 41(8): 21-61. |
[9] |
Lin J, Zhao Y, Huang W, et al. Domain knowledge graph-based research progress of knowledge representation[J]. Neural Computing and Applications, 2021, 33(2): 681-690.
doi: 10.1007/s00521-020-05057-5 |
[10] | Sharma M, Sharma V D, Bundele M M. erformance analysis of RDBMS and no SQL databases: PostgreSQL, MongoDB and Neo4j[C]// 2018 3rd International Conf-erence and Workshops on Recent Advances and Innovat-ions in Engineering (ICRAIE), IEEE, 2018: 1-5. |
[11] | Fernandes D, Bernardino J. Graph Databases Compar-ison: AllegroGraph, ArangoDB, InfiniteGraph, Neo4J, and OrientDB[C]// Data, 2018: 373-380. |
[12] | 王鑫, 邹磊, 王朝坤, 彭鹏, 冯志勇. 知识图谱数据管理研究综述[J]. 软件学报, 2019, 30(07):2139-2174. |
[13] | Liu J, Duan L. A survey on knowledge graph-based recommender systems[C]// 2021 IEEE 5th Advanced Inf-ormation Technology, Electronic and Automation Control Conference (IAEAC), IEEE, 2021, 5: 2450-2453. |
[14] | Wang H, Zhang F, Wang J, et al. Ripplenet: Propagating user preferences on the knowledge graph for recommen-der systems[C]// Proceedings of the 27th ACM Internati-onal Conference on Information and Knowledge Mana-gement, 2018: 417-426. |
[15] | 秦川, 祝恒书, 庄福振, 郭庆宇, 张琦, 张乐, 王超, 陈恩红, 熊辉. 基于知识图谱的推荐系统研究综述[J]. 中国科学:信息科学, 2020, 50(07):937-956. |
[16] | 刘知远, 孙茂松, 林衍凯, 谢若冰. 知识表示学习研究进展[J]. 计算机研究与发展, 2016, 53(02):247-261. |
[17] |
Cai H, Zheng V W, Chang K C C. A comprehensive sur-vey of graph embedding: Problems, techniques, and applications[J]. IEEE Transactions on Knowledge and Data Engineering, 2018, 30(9): 1616-1637.
doi: 10.1109/TKDE.2018.2807452 |
[18] | Wang Z, Zhang J, Feng J, et al. Knowledge graph embed-ding by translating on hyperplanes[C]// Proceedings of the AAAI Conference on Artificial Intelligence, 2014, 28(1): 1112-1119. |
[19] | Lin Y, Liu Z, Sun M, et al. Learning entity and relation embeddings for knowledge graph completion[C]// Twe-nty-ninth AAAI conference on artificial intelligence, 2015: 2181-2187. |
[20] | Xiao H, Huang M, Hao Y, et al. TransA: An Adaptive Approach for Knowledge Graph Embedding[J/OL]. arXiv preprint arXiv:1509.05490, 2015. |
[21] | Han X, Huang M, Zhu X. TransG : A Generative Model for Knowledge Graph Embedding[C]// Proceedings of the 54th Annual Meeting of the Association for Com-putational Linguistics (Volume 1: Long Papers), 2016: 2316-2325. |
[22] |
Dai Y, Wang S, Xiong N N, et al. A survey on knowledge graph embedding: Approaches, applications and bench-marks[J]. Electronics, 2020, 9(5): 750-779.
doi: 10.3390/electronics9050750 |
[23] | Sun Z, Deng Z H, Nie J Y, et al. Rotate: Knowledge graph embedding by relational rotation in complex space[J]. CoRR, 2019, abs/1902.10197. |
[24] | Zhou X, Yi Y, Jia G. Path-RotatE: Knowledge Graph Embedding by Relational Rotation of Path in Complex Space[C]// 2021 IEEE/CIC International Conference on Communications in China (ICCC), IEEE, 2021: 905-910. |
[25] |
Song Y, Wang X, Quan W, et al. A new approach to construct similarity measure for intuitionistic fuzzy sets[J]. Soft Computing, 2019, 23(6): 1985-1998.
doi: 10.1007/s00500-017-2912-0 |
[1] | XU Songyuan,LIU Feng. ESDRec: A Data Recommendation Model for Earth Big Data Platform [J]. Frontiers of Data and Computing, 2023, 5(1): 55-64. |
[2] | LAN Ge,WANG Jinyu,SUN Yufei,ZHANG Yuzhi. Graph Matching Text Classification Based on KG [J]. Frontiers of Data and Computing, 2022, 4(2): 39-49. |
[3] | TAO Lei,SU Chenyang,LI Zhengdan,ZHU Jingwen,ZHANG Yuzhi. Educational Resource Search Strategy Based on ElasticSearch and Semantic Similarity Matching [J]. Frontiers of Data and Computing, 2022, 4(2): 50-62. |
[4] | HU Zhengyin,LIU Leilei,CHEN Wenjie,LIU Chunjiang,QIAN Li,SONG Yibing. Generating a Hematopoietic Stem Cell Knowledge Graph for Scientific Knowledge Discovery [J]. Frontiers of Data and Computing, 2021, 3(6): 81-97. |
[5] | LI Xu,LIAN Yifeng,ZHANG Haixia,HUANG kezhen. Key Technologies of Cyber Security Knowledge Graph [J]. Frontiers of Data and Computing, 2021, 3(3): 9-18. |
[6] | LI Yan,CHEN Yuanping. Research on Resource Recommendation Technology of Scientific Research Information Portal [J]. Frontiers of Data and Computing, 2021, 3(2): 112-119. |
[7] | LIU Jia,XIA Xiaolei,WANG Shu,WANG Lijuan,GUO Zhibing,HU Lianglin,ZHOU Yuanchun. Science & Technology Resource Identification Service System and its Innovative Application [J]. Frontiers of Data and Computing, 2020, 2(6): 62-73. |
[8] | Sun Yanyan,Mao Weinan,Mao Yufei,Wu Haibo. Research on Virtual Innovation Ecosystem Based on Regional Science and Technology Resource Service Platform [J]. Frontiers of Data and Computing, 2020, 2(5): 30-40. |
[9] | Yuanchun Zhou,Qingling Chang,Yi Du. SKS: A Platform for Big Data Based Scientific Knowledge Graph [J]. Frontiers of Data and Computing, 2019, 1(1): 82-93. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||