Frontiers of Data and Computing ›› 2020, Vol. 2 ›› Issue (2): 59-77.
doi: 10.11871/jfdc.issn.2096-742X.2020.02.005
Special Issue: “数据分析技术与应用”专刊
• Special Issue: Data Analysis Technology & Application • Previous Articles Next Articles
Liu Kunpeng1,Zhao Xiaosa2,Hu Yirui3,Fu Yanjie1,*()
Received:
2019-12-10
Online:
2020-04-20
Published:
2020-06-03
Contact:
Yanjie Fu
E-mail:yanjie.fu@ucf.edu
Liu Kunpeng,Zhao Xiaosa,Hu Yirui,Fu Yanjie. Modeling the Effects of Individual and Group Heterogeneity on Multi-Aspect Rating Behavior[J]. Frontiers of Data and Computing, 2020, 2(2): 59-77.
"
Symbol | Size | Description |
---|---|---|
Y | I×J | Overall rating matrix |
G | I×J | Aspect-2 rating matrix |
H | I×J | Aspect-1 rating matrix |
yij | 1 | Overall rating of user i for item j |
gij | 1 | Aspect-1 rating of user i for item j |
hij | 1 | aspect-2 rating of user i for item j |
U | K×1 | User latent matrix |
E | K×J | Item aspect-1 latent matrix |
C | K×J | Item aspect-2 latent matrix |
ui | K×1 | Latent features of user i |
ej | K×1 | Aspect-1 latent features of item j |
cj | K×1 | Aspect-2 latent features of item j |
uki | 1 | k-th latent feature of user i |
ekj | 1 | k-th latent feature of aspect-1 of item j |
ckj | 1 | k-th latent feature of aspect-2 of item j |
"
1. | Draw user latent factor ${{u}_{i}}\tilde{\ }P({{u}_{i}};{{\sigma }_{{{u}_{i}}}})$ |
2. | Generate aspect-1 rating a. Draw item aspect-1 latent factor ${{e}_{j}}\tilde{\ }P({{e}_{j}};{{\sigma }_{{{e}_{j}}}})$ b. Draw item aspect-1 rating ${{g}_{ij}}\tilde{\ }P(u_{i}^{T}\cdot {{e}_{j}})$ |
3. | Generate aspect-2 rating a. Draw aspect-2 latent factor ${{c}_{j}}\tilde{\ }P({{c}_{j}};{{\sigma }_{{{c}_{j}}}})$ b. Draw aspect-2 rating ${{h}_{ij}}\tilde{\ }P(u_{i}^{T}\cdot {{c}_{j}})$. |
4. | Generate overall rating a. Draw aspect weights $p$ and $q$, s.t. $p+q=1$ b. Draw overall rating ${{y}_{ij}}\tilde{\ }P(p\cdot u_{i}^{T}\cdot {{e}_{j}}+q\cdot u_{i}^{T}\cdot {{c}_{j}})$ |
"
1. | Generate latent factors a. Draw ${{u}_{ki}}\tilde{\ }Exp(\alpha )$ b. Draw ${{e}_{kj}}\tilde{\ }Exp(\beta )$ c. Draw ${{c}_{kj}}\tilde{\ }Exp(\beta )$ |
2. | Generate variance a. Draw ${{\sigma }^{2}}\tilde{\ }Inv-Gamma(a,b)$ |
3. | Generate ratings a. Generate ${{g}_{ij}}\tilde{\ }N(u_{i}^{T}{{e}_{j}},{{\sigma }^{2}})$ b. Generate ${{h}_{ij}}\tilde{\ }N(u_{i}^{T}{{c}_{j}},{{\sigma }^{2}})$ |
"
Overall Rating | ${{y}_{ij}}\tilde{\ }N(\mu _{ij}^{y},{{\sigma }^{2}})$ |
Aspect-1 Rating | ${{g}_{ij}}\tilde{\ }N(\mu _{ij}^{g},{{\sigma }^{2}})$ |
Aspect-2 Rating | ${{h}_{ij}}\tilde{\ }N(\mu _{ij}^{h},{{\sigma }^{2}})$ |
Overall Utility | $\mu _{ij}^{y}=p\cdot u_{i}^{T}{{e}_{j}}+q\cdot u_{i}^{T}{{c}_{j}}$ |
Aspect-1 Utility | $\mu _{ij}^{g}=u_{i}^{T}{{e}_{j}}$ |
Aspect-2 Utility | $\mu _{ij}^{h}=u_{i}^{T}{{c}_{j}}$ |
User Latent Factors | ${{u}_{ki}}\tilde{\ }Exp(\alpha )$ |
Aspect-1 Latent Factors | ${{e}_{kj}}\tilde{\ }Exp(\beta )$ |
Aspect-2 Latent Factors | ${{c}_{kj}}\tilde{\ }Exp(\beta )$ |
Variance | ${{\sigma }^{2}}\tilde{\ }Inv-Gamma(a,b)$ |
"
1. | Generate latent factors Generate ${{u}_{i}}$, ${{e}_{j}}$, ${{c}_{j}}$ from MFRL |
2. | Generate distributions for each group a. Draw ${{\lambda }_{n}}$, $\sigma _{n}^{2}$ for each group b. Draw ${{f}_{n}}(x)\tilde{\ }N([u_{i}^{T},e_{j}^{T},c_{j}^{T}]\cdot {{\lambda }_{n}},\sigma _{n}^{2}$ |
3. | Generate overall rating b. Generate weight in the mixture model c. Generate ${{y}_{ij}}\tilde{\ }\sum\nolimits_{n=1}^{N}{{{\alpha }_{n}}N([u_{i}^{T},e_{j}^{T},c_{j}^{T}]\cdot {{\lambda }_{n}},\sigma _{n}^{2})}$ |
"
Methods | K=5 | K=20 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
MAE | RMSE | NDCG@1 | NDCG@3 | NDCG@5 | MAE | RMSE | NDCG@1 | NDCG@3 | NDCG@5 | ||
MFRL(R1) | 0.907 | 1.100 | 0.721 | 0.751 | 0.702 | 0.915 | 1.117 | 0.784 | 0.732 | 0.705 | |
MFRL(R2) | 0.912 | 1.073 | 0.706 | 0.784 | 0.697 | 0.881 | 1.251 | 0.799 | 0.738 | 0.711 | |
MFRL(R3) | 0.903 | 1.106 | 0.732 | 0.770 | 0.707 | 0.914 | 1.228 | 0.807 | 0.727 | 0.691 | |
MFRL(R4) | 0.915 | 1.119 | 0.710 | 0.783 | 0.716 | 0.901 | 1.255 | 0.791 | 0.742 | 0.709 | |
MFRL(R5) | 0.912 | 1.092 | 0.714 | 0.762 | 0.710 | 0.925 | 1.239 | 0.810 | 0.715 | 0.699 | |
Mix-MFRL(R1) | 0.792 | 0.970 | 0.771 | 0.831 | 0.724 | 0.813 | 1.009 | 0.791 | 0.801 | 0.726 | |
Mix-MFRL(R2) | 0.813 | 0.995 | 0.769 | 0.812 | 0.742 | 0.837 | 1.052 | 0.779 | 0.809 | 0.744 | |
Mix-MFRL(R3) | 0.782 | 0.930 | 0.757 | 0.794 | 0.734 | 0.797 | 0.819 | 0.787 | 0.813 | 0.709 | |
Mix-MFRL(R4) | 0.801 | 1.014 | 0.780 | 0.805 | 0.781 | 0.781 | 1.280 | 0.799 | 0.786 | 0.727 | |
Mix-MFRL(R5) | 0.810 | 0.978 | 0.746 | 0.830 | 0.762 | 0.774 | 1.212 | 0.781 | 0.791 | 0.736 |
[1] | McAuley J, Leskovec J & Jurafsky D . Learning attitudes and attributes from multi-aspect reviews [C]. In Data Mining (ICDM), 2012 IEEE 12th International Conference on. IEEE 2012 (2012):1020-1025. |
[2] | Fu X H, Liu G, Guo Y Y et al. Multi-aspect sentiment analysis for Chinese online social reviews based on topic modeling and HowNet lexicon[J]. Knowledge-Based Systems 37(2013):186-195. |
[3] | Zhu J , Zhang C & Ma M Y . Multi-aspect rating inference with aspect-based segmentation[J]. IEEE Transactions on Affective Computing 3(2012):469-481. |
[4] | Baas SM & Kwakernaak H . Rating and ranking of multiple-aspect alternatives using fuzzy sets[J]. Automatica 13(1977):47-58. |
[5] | Bin Lu B, Myle Ott M, Claire Cardie C, et al. Multi-aspect sentiment analysis with topic models [C]. In Data Mining Workshops (ICDMW), 2011 IEEE 11th International Conference on. IEEE 2011 (2011):81-88. |
[6] | Fang Y & Si L . Matrix co-factorization for recommendation with rich side information and implicit feedback [C]. In Proceedings of the 2nd International Workshop on Information Heterogeneity and Fusion in Recommender Systems. ACM 2011 (2011):65-69. |
[7] | Klami A, Bouchard G & Tripathi A. Group-sparse embeddings in collective matrix factorization[J]. arXiv preprint arXiv:1312.5921, 2013. |
[8] | Marlin B & Zemel R S . The multiple multiplicative factor model for collaborative filtering [C]. In Proceedings of the twenty-first international conference on Machine learning. ACM 2004 (2004):73. |
[9] | Mnih A & Salakhutdinov R R . Probabilistic matrix factorization[J]. In Advances in neural information processing systems 2008 (2008):1257-1264. |
[10] | Singh A P & Gordon G J . Relational learning via collective matrix factorization [C]. In Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM 2008 ( 2008):650-658. |
[11] | Schmidt M N, Winther O & Hansen L K. Bayesian non-negative matrix factorization [C]. In International Conference on Independent Component Analysis and Signal Separation. Springer 2009 (2009):540-547. |
[12] | Moon T K . 1996. The expectation-maximization algorithm[J]. IEEE Signal processing magazine 13(1996):47-60. |
[13] | Linoff G S & Berry M J A . Data mining techniques: for marketing, sales, and customer relationship management[J]. John Wiley & Sons, 2011. |
[14] | Fu Y J, Liu B, Ge Y et al. User preference learning with multiple information fusion for restaurant recommendation [C]. In Proceedings of the 2014 SIAM International Conference on Data Mining. SIAM 2014 (2014):470-478. |
[15] | Zhou H Y, Chen J H & Ye J P. Malsar: Multi-task learning via structural regularization[J]. Arizona State University 21 (2011). |
[16] | Vallerand R J. Toward a hierarchical model of intrinsic and extrinsic motivation. In Advances in experimental social psychology[J]. Academic Press 29 (1997):271-360. |
[17] | Lee H H & Teng W G . Incorporating multi-criteria ratings in recommendation systems [C]. In Information Reuse and Integration, 2007. IRI 2007. IEEE International Conference on. IEEE 2007 (2007):273-278. |
[18] | Adomavicius G, Sankaranarayanan R, Sen S et al. Incorporating contextual information in recommender systems using a multidimensional approach[J]. ACM Transactions on Information Systems 23(2005):103-145. |
[19] | Adomavicius G & Kwon Y O. 2007. New recommendation techniques for multicriteria rating systems[J]. IEEE Intelligent Systems 22(2007):48-55. |
[20] | Argyriou A, Evgeniou T & Pontil M. Multi-task feature learning[J]. In Advances in neural information processing systems 2007 (2007):41-48. |
[21] | Jalali A, Sanghavi S, Ruan C & Ravikumar P K. . A dirty model for multi-task learning[J]. In Advances in neural information processing systems 2010 (2010):964-972. |
[22] | Lounici K, Pontil M, Tsybakov A B , et al. Taking advantage of sparsity in multi-task learning[J]. arXiv preprint arXiv:0903.1468, 2009. |
[23] | Zhou J Y, Yuan L, Liu J et al. A multi-task learning formulation for predicting disease progression [C]. In Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM 2011 (2011):814-822. |
[24] | Kumar A & Daume III H . Learning task grouping and overlap in multi-task learning[J]. arXiv preprint arXiv:1206.6417, 2012. |
[25] | Evgeniou T & Pontil M . Regularized multi-task learning [C]. In Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining. ACM 2004 (2004):109-117. |
[26] | Liu J, Ji S W & Ye J P . Multi-task feature learning via efficient l 2, 1-norm minimization[C]. In Proceedings of the twenty-fifth conference on uncertainty in artificial intelligence. AUAI Press 2009 (2009):339-348. |
[27] | Zhang Y & Yeung D Y . A convex formulation for learning task relationships in multi-task learning[J]. arXiv preprint arXiv:1203.3536, 2012. |
[28] | Xue Y, Liao X J, Carin L et al. Multi-task learning for classification with dirichlet process priors[J]. Journal of Machine Learning Research 8(2007):35-63. |
[29] | Figueiredo M A T & Jain A K . Unsupervised learning of finite mixture models[J]. IEEE Transactions on pattern analysis and machine intelligence 24(2002):381-396. |
[30] | Zivkovic Z & Heijden F V D . Recursive unsupervised learning of finite mixture models[J]. IEEE Transactions on pattern analysis and machine intelligence 26(2004):651-656. |
[31] | Chen H F, Chen J H & Kalbfleisch J D . A modified likelihood ratio test for homogeneity in finite mixture models[J]. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 63(2001):19-29. |
[32] | Bapna R, Goes G, Wei K K et al. A finite mixture logit model to segment and predict electronic payments system adoption[J]. Information Systems Research 22(2011):118-133. |
[33] | Muthén B & Shedden K . Finite mixture modeling with mixture outcomes using the EM algorithm[J]. Biometrics 55(1999):463-469. |
[34] | Yu J & Qin S J . Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models[J]. AIChE Journal 54(2008):1811-1829. |
[35] | Teratanavat R and Hooker N H . Consumer valuations and preference heterogeneity for a novel functional food[J]. Journal of Food Science 71(2006):S533-S541. |
[36] | Cicia G, Del Giudice T & Scarpa R . Consumers’ perception of quality in organic food: a random utility model under preference heterogeneity and choice correlation from rank-orderings[J]. British Food Journal 104(2002):200-213. |
[37] | Ravi Dhar . 1997. Consumer preference for a no-choice option[J]. Journal of consumer research 24, 2(1997), 215-231. |
[38] | Kamakura W A, Kim B D & Lee J . 1996. Modeling preference and structural heterogeneity in consumer choice[J]. Marketing Science 15(1996):152-172. |
[39] | Liu K., Wang P., Zhang J., Fu Y. and Das S.K., 2018, May. Modeling the Interaction Coupling of Multi-View Spatiotemporal Contexts for Destination Prediction [C]. In Proceedings of the 2018 SIAM International Conference on Data Mining (pp. 171-179). Society for Industrial and Applied Mathematics. |
[40] | Liu K., Uplavikar N., Jiang W. and Fu Y., 2018, November. Privacy-Preserving Multi-task Learning [C]. In 2018 IEEE International Conference on Data Mining (ICDM)(pp. 1128-1133). IEEE. |
[41] | Liu K., Fu Y., Wang P., Wu L., Bo R. and Li X., 2019, July. Automating Feature Subspace Exploration via Multi-Agent Reinforcement Learning [C]. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (pp. 207-215). |
[42] | Breffle W S & Morey E R . Investigating preference heterogeneity in a repeated discrete-choice recreation demand model of Atlantic salmon fishing[J]. Marine Resource Economics 15(2000):1-20. |
[43] | Poulsen C S, Brockhoff P M B & Erichsen L . Heterogeneity in consumer preference data-a combined approach[J]. Food quality and preference 8 5-6(1997):409-417. |
[1] | WEI Ting,ZHANG Honghai,LIN Xiaoli,ZHANG Leilei,WANG Yan,JIA Jinfeng. Predictive Model of the Revisit Behavior of Cloud Service Site Users [J]. Frontiers of Data and Computing, 2022, 4(3): 124-130. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||