数据与计算发展前沿 ›› 2025, Vol. 7 ›› Issue (3): 48-66.

CSTR: 32002.14.jfdc.CN10-1649/TP.2025.03.005

doi: 10.11871/jfdc.issn.2096-742X.2025.03.005

• 专刊:中国科学院计算机网络信息中心成立30周年 • 上一篇    下一篇

基于推理攻击的生成模型隐私风险评估技术研究与应用综述

张宁徽1,2(),龙春1,*(),万巍1,李婧1,杨帆1,魏金侠1,付豫豪1   

  1. 1.中国科学院计算机网络信息中心,北京 100083
    2.中国科学院大学,北京100190
  • 收稿日期:2025-04-28 出版日期:2025-06-20 发布日期:2025-06-25
  • 通讯作者: *龙春(E-mail: anquanip@cnic.cn
  • 作者简介:张宁徽,中国科学院计算机网络信息中心,硕士研究生,主要研究方向为数据安全与隐私保护。
    本文负责文献调研,整理分析。
    ZHANG Ninghui, a Master’s student at the Computer Network Information Center, Chinese Academy of Sciences (CNIC), specializes in data security and privacy protection.
    In this paper, he is responsible for literature review,analysis, and synthesis.
    E-mail: nhzhang@cnic.cn|龙春,中国科学院计算机网络信息中心,正高级工程师,博士生导师。计算机学会安全专委会委员,中国互联网协会青年专家。主要从事智能网络安全保障、安全大数据挖掘与深度分析等方面的科研工作,获得北京市科学技术奖科学技术进步二等奖。
    本文负责论文框架设计、文献分析。
    LONG Chun is a senior engineer in the Computer Network Information Center, Chinese Academy of Sciences. He also serves as a Ph.D. supervisor at the University of Chinese Academy of Sciences. He is Member of the Security Committee of the Computer Society, and a young expert at the China Internet Association.He is engaged in scientific research in the fields of intelligent network security protection, security big data mining, and in-depth analysis. He has won the second prize of the Science and Technology Progress Award from the Beijing Municipal Science and Technology Award.
    In this paper, he is responsible for designing the framework and analyzing the literature.
    E-mail: anquanip@cnic.cn
  • 基金资助:
    国家重点研发计划(2023YFC3304704);中国科学院网络安全和信息化专项(CAS-WX2022GC-04);中国科学院青年创新促进会项目(2022170)

A Review of the Research and Application of Privacy Risk Assessment Techniques for Generative Models Based on Inference Attacks

ZHANG Ninghui1,2(),LONG Chun1,*(),WAN Wei1,LI Jing1,YANG Fan1,WEI Jinxia1,FU Yuhao1   

  1. 1. Computer Network Information Center, Chinese Academy of Sciences, Beijing 100083, China
    2. University of Chinese Academy of Sciences, Beijing 100190, China
  • Received:2025-04-28 Online:2025-06-20 Published:2025-06-25

摘要:

【目的】系统梳理生成模型中基于推理攻击的隐私风险评估技术研究进展与应用现状。【文献范围】本文调研了2015年至2024年主流会议与期刊的70余篇文献。【方法】在技术维度下以黑盒与白盒条件假设为核心分类依据,在黑盒与白盒条件假设下又具体到每类生成模型的攻击方法进行细分总结,而应用维度下则聚焦于合成数据的隐私风险评估框架方案比较。【结果】现有攻击技术研究较为完备,但其与模型种类耦合度较高且在黑盒场景下受限于准确率,导致实际应用中合成数据隐私风险的评估框架在通用性和准确性等方面存在局限。【结论】本文与当前同方向综述相比首次归纳大语言模型成员推理攻击的最新成果,同时对比分析了当前最新的合成数据隐私风险评估框架。通过技术-应用双维度总结分析为研究者在该方向上提供有价值的参考和指导。

关键词: 生成模型, 成员推理攻击, 属性推理攻击, 隐私风险评估

Abstract:

[Objective] To systematically sort out the research progress and application status of privacy risk assessment techniques for generative models based on inference attacks. [Literature Scope] this paper has surveyed more than 70 pieces of literature from mainstream conferences and journals between 2015 and 2024. [Methods] From the technical dimension, the core classification basis is the assumptions of black-box and white-box conditions. Under the assumptions of black-box and white-box conditions, a detailed summary is made by further classifying the attack methods for each type of generative model. From the application dimension, the focus is on the comparison of privacy risk assessment framework solutions for synthetic data. [Results] The existing research on attack technologies is relatively complete. However, it has a high degree of coupling with the types of models and is limited by the accuracy rate in black-box scenarios, resulting in limitations in terms of universality and accuracy of the assessment framework for the privacy risks of synthetic data in practical applications. [Conclusion] Compared with current reviews in the same research direction, this paper for the first time summarizes the latest achievements of membership inference attacks on large language models and simultaneously conducts a comparative analysis of the current latest privacy risk assessment frameworks for synthetic data. Through a summary and analysis from both dimensions of technology and application, it provides valuable references and guidance for researchers in this direction.

Key words: generative model, membership inference attack, attribute inference attack, privacy risk assessment