[1] |
CHEN LQ. Phase-field models for microstructure evolution[J]. Annual Review of Materials Research, 2002, 32: 113-140.
|
[2] |
STEINBACH I. Phase-field models in materials science[J]. Modelling and Simulation in Materials Science and Engineering, 2009, 17: 073001.
|
[3] |
SHIMOKAWABE T, AOKI T, TAKAKI T, et al. Peta-scale phase-field simulation for dendritic solidification on the tsubame 2.0 supercomputer[C]// Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis (SC’11), 2011:Article No. 3.
|
[4] |
TAKAKI T, SHIMOKAWABE T, OHNO M, et al. Unexpected selection of growing dendrites by very-large-scale phase-field simulation[J]. Journal of Crystal Growth, 2013, 382: 21-25.
|
[5] |
TAKAKI T, SAKANE S, OHNO M, et al. Primary arm array during directional solidification of a single-crystal[J]. Acta Materialia, 2016, 118: 230-243.
|
[6] |
BAUER M, HÖTZER J, JAINTA M, et al. Massively parallel phase-field simulations for ternary eutectic directional solidification[C]// Proceedings of 2015 International Conference for High Performance Computing, Networking, Storage and Analysis (SC’15), 2015:1-12.
|
[7] |
BAUER M, et al. Code generation for massively parallel phase-field simulations[C]// Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, 2019: 1-32.
|
[8] |
ZHANG J, ZHOU C, WANG Y, et al. Extreme-scale phase field simulations of coarsening dynamics on the sunway taihulight supercomputer[C]// Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, 2016: 34-45.
|
[9] |
CAHN J, HILLARD J. Free energy of a nonuniform system interfacial free energy[J]. Journal of Chemical Physics, 1958, 28: 258-267.
|
[10] |
ZHOU X, WANG D. Objects as points[EB/OL]. (2019-04-07)[2024-06-04]. https://arxiv.org/abs/1904.07850.
|
[11] |
SIMONELLI A, BULO S R, PORZI L, et al. Disentangling monocular 3d object detection[C]// Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 1991-1999.
|
[12] |
ROWLINSON JS. Translation of J D van der Waals, The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density[J]. Journal of Statistical Physics, 1979, 20: 197-200.
|
[13] |
CAHN J, HILLARD J. Free energy of a nonuniform system interfacial free energy[J]. Journal of Chemical Physics, 1958, 28: 258-267.
|
[14] |
LANDAU LD, KHALATIKOW IM. The Selected Works of L.D. Landau[M]. Engl. transl. Oxford: Pergamon, 1963.
|
[15] |
CAHN J, HILLARD J. Free energy of a nonuniform system interfacial free energy[J]. Journal of Chemical Physics, 1958, 28: 258-267.
|
[16] |
ALLEN SM, CAHN JW. Coherent and incoherent equilibria in iron-rich iron-aluminum alloys[J]. Acta Metallurgica, 1975, 23(9): 1017-1026.
|
[17] |
FIX GJ. In Free Boundary Problems: Theory and Applications[M]. ed. A. FASANO, M. PRIMICERIO, Boston: Piman, 1983: 580.
|
[18] |
KOBAYASHI R, WARREN JA, CARTER WC. A continuum model of grain boundaries[J]. Physica D: Nonlinear Phenomena, 2000, 140(1-2): 141-150.
|
[19] |
WANG YU, JIN YM, CUITINO AM, et al. Phase field microelasticity theory and modeling of multiple dislocation dynamics[J]. Applied Physics Letters, 2001, 78(16): 2324-2326.
|
[20] |
MAHADEVAN M, BRADLEY RM. Phase field model of surface electromigration in single crystal metal thin films[J]. Physica D: Nonlinear Phenomena, 1999, 126(3-4): 201-213.
|
[21] |
BHATE DN, KUMAR A, BOWER AF. Diffuse interface model for electromigration and stress voiding[J]. Journal of Applied Physics, 2000, 87(4): 1712-1721.
|
[22] |
LU W, SUO Z. Dynamics of nanoscale pattern formation of an epitaxial monolayer[J]. Journal of the Mechanics and Physics of Solids, 2001, 49(9): 1937-1950.
|
[23] |
LANGER JS. Lectures on the theory of pattern formation[C]// Chance and Matter, Les Houches, session XLVI (Amsterdam, The Netherlands). ed. J SOULETIE et al, 1986: 692-711.
|
[24] |
HÖTZER J. Massiv-parallele und groskalige phasenfeldsimulationen zur untersuchung der mikrostrukturentwicklung[D/OL]. 2017. https://publikationen.bibliothek.kit.edu/1000069984.
|
[25] |
ZHOU Y, TUZEL O. Voxelnet: End-to-end learning for point cloud based 3d object detection[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018:4490-4499.
|
[26] |
YAN Y, MAO YX, LI B. Second: Sparsely embedded convolutional detection[J/OL]. Sensors, 2018, 18(10): 3337, https://www.mdpi.com/1424-8220/18/10/3337.
|
[27] |
DENG JJ, et al. Voxel r-cnn: Towards high performance voxel-based 3d object detection[C]// Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(2): 1201-1209.
|
[28] |
QI CR, et al. Pointnet: Deep learning on point sets for 3d classification and segmentation[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 652-660.
|
[29] |
YANG ZT, et al. 3dssd: Point-based 3d single stage object detector[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 11040-11048.
|
[30] |
SHI SS, WANG XG, LI HS. Pointrcnn: 3d object proposal generation and detection from point cloud[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 770-779.
|
[31] |
SHI S, GUO C, JIANG L, et al. Pv-rcnn: Point-voxel feature set abstraction for 3d object detection[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 10529-10538.
|
[32] |
HE CH, et al. Structure aware single-stage 3d object detection from point cloud[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 11873-11882.
|
[33] |
JIA Y, SHELHAMER E, DONAHUE J, et al. Caffe: Convolutional architecture for fast feature embedding[C]// Proceedings of the 22nd ACM International Conference on Multimedia, 2014: 675-678.
|
[34] |
CHELLAPILLA K, PURI S, SIMARD P. High performance convolutional neural networks for document processing[C/OL]// Tenth International Workshop on Frontiers in Handwriting Recognition. Suvisoft, 2006. https://inria.hal.science/inria-00112631/.
|
[35] |
FANG J, FU H, ZHAO W, et al. Swdnn: A library for accelerating deep learning applications on sunway taihulight[C]// 2017 IEEE International Parallel and Distributed Processing Symposium (IPDPS), IEEE, 2017: 615-624.
|
[36] |
MATHIEU M, HENAFF M, LECUN Y. Fast training of convolutional networks through ffts[EB/OL]. (2013-12-19)[2024-06-04]. https://arxiv.org/abs/1312.5851.
|
[37] |
VASILACHE N, JOHNSON J, MATHIEU M, et al. Fast convolutional nets with fbfft: A gpu performance evaluation[EB/OL]. (2014-12-23)[2024-06-04]. https://arxiv.org/abs/1412.7580.
|
[38] |
JIA Z, ZLATESKI A, DURAND F, et al. Optimizing n-dimensional, winograd-based convolution for manycore cpus[C]// Proceedings of the 23rd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, 2018: 109-123.
|
[39] |
LIU J, YANG D, LAI J. Optimizing winograd-based convolution with tensor cores[C]// Proceedings of the 50th International Conference on Parallel Processing, 2021: 1-10.
|
[40] |
LI L, FANG J, FU H, et al. Swcaffe: A parallel framework for accelerating deep learning applications on sunway taihulight[C]// 2018 IEEE International Conference on Cluster Computing (CLUSTER), IEEE, 2018: 413-422.
|
[41] |
LIN H, LIN Z, DIAZ JM, et al. Swflow: A dataflow deep learning framework on sunway taihulight supercomputer[C]// 2019 IEEE 21st International Conference on High Performance Computing and Communications; IEEE 17th International Conference on Smart City; IEEE 5th International Conference on Data Science and Systems (HPCC/SmartCity/DSS). IEEE, 2019: 2467-2475.
|
[42] |
ZHANG Y, SHU B, YIN Y, et al. Efficient processing of convolutional neural networks on sw26010[C]// IFIP International Conference on Network and Parallel Computing, Springer, 2019: 316-321.
|
[43] |
WU Z. Mg3mconv: Multi-grained matrix-multiplication-mapping convolution algorithm toward the sw 26010 processor[EB/OL]. (2023-07-05)[2024-06-04]. https://arxiv.org/abs/2307.04941.
|
[44] |
CHEN J, et al. Projective manifold gradient layer for deep rotation regression[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 6646-6655.
|
[45] |
CHEN J, YIN Y, BIRDAL T, et al. Projective manifold gradient layer for deep rotation regression[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 6646-6655.
|
[46] |
ZHOU Y, BARNES C, LU J, et al. On the continuity of rotation representations in neural networks[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 5745-5753.
|
[47] |
LEVINSON J, ESTEVES C, CHEN K, et al. An analysis of svd for deep rotation estimation[J]. Advances in Neural Information Processing Systems, 2020, 33: 22554-22565.
|
[48] |
CHEN J, YIN Y, BIRDAL T, et al. Projective manifold gradient layer for deep rotation regression[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 6646-6655.
|
[49] |
DENG J, SHI S, LI P, et al. Voxel r-cnn: Towards high performance voxel-based 3d object detection[C]// Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(2): 1201-1209.
|
[50] |
ZHOU Q, YU C. Point RCNN: An angle-free framework for rotated object detection[J/OL]. Remote Sensing, 2022, 14(11): 2605. https://arxiv.org/abs/2205.14328.
|
[51] |
SHI FR, WANG Y. Variant selection during a precipitation in TiC6AlC4V under the influence of local stress C A simulation study[J]. Acta Materialia, 2013, 61: 6006-6024.
|
[52] |
JIANG L, YANG C, AO Y, et al. Towards highly efficient DGEMM on the emerging SW 26010 many-core processor[C]// 46th International Conference on Parallel Processing (ICPP), IEEE, 2017: 422-431.
|
[53] |
SUN F, PRIMA F, GLORIANT T. High-strength nanostructured TiC12Mo alloy from ductile metastable beta state precursor[J]. Materials Science and Engineering A, 2010, 527: 4262-4269.
|
[54] |
ZHENG Y, et al. Role of phase in the formation of extremely refined intragranular precipitates in metastable-titanium alloys[J]. Acta Materialia, 2016, 103: 850-858.
|
[55] |
LI T, CAIRNEY JM, KENT D, et al. The Mechanism of omega-assisted alpha phase formation in near beta-Ti alloys[J]. Scripta Materialia, 2015, 104: 75-78.
|
[56] |
NAG S, BANERJEE R, SRINIVASAN R, et al. Omega assisted nucleation and growth of alpha precipitates in the Ti-5AlC5MoC5VC3CrC0.5Fe beta titanium alloy[J]. Acta Materialia, 2009, 57: 2136-2147.
|