Frontiers of Data and Computing ›› 2023, Vol. 5 ›› Issue (6): 42-57.
CSTR: 32002.14.jfdc.CN10-1649/TP.2023.06.005
doi: 10.11871/jfdc.issn.2096-742X.2023.06.005
Previous Articles Next Articles
ZHAO Zejun1,2(),FAN Zhenfeng1,2,DING Bo1,2,XIA Shihong1,2,*()
Online:
2023-12-20
Published:
2023-12-25
ZHAO Zejun, FAN Zhenfeng, DING Bo, XIA Shihong. Deepfake Detection Based on Incremental Learning[J]. Frontiers of Data and Computing, 2023, 5(6): 42-57, https://cstr.cn/32002.14.jfdc.CN10-1649/TP.2023.06.005.
Table 2
ForgeryNet expansion set"
任务 | 真实数据来源 | 伪造数据来源[ | 数 量(张) | 合 计(张) |
---|---|---|---|---|
1 | FF++_Youtube[ | FaceShifter | 20,000 | |
2 | FaceTracer[ | FS_GAN | 20,000 | |
3 | DoGANs[ | DeepFakes | 20,000 | |
4 | FFHQ[ | BlendFace | 20,000 | |
5 | FF++_actors[ | MMReplacement | 20,000 | |
6 | Celeb_DF[ | DeepFakes_StarGAN_Stack | 20,000 | |
7 | PubFig[ | Talking_Head_Video | 20,000 | |
8 | LFW[ | AVTG_Net | 20,000 | 300,000 |
9 | MTFL[ | StarGAN_BlendFace_Stack | 20,000 | |
10 | IMDB-WIKI[ | First_Order_Motion | 20,000 | |
11 | FDDB[ | StyleGAN2 | 20,000 | |
12 | Colorferet[ | MaskGAN | 20,000 | |
13 | UTKFace[ | StarGAN2 | 20,000 | |
14 | Forgerynet[ | SC_FEGAN | 20,000 | |
15 | All-Age-Faces[ | DiscoFaceGAN | 20,000 |
Table 7
Average accuracy of new and old samples at different incremental moments on the FF++ expansion set and the ForgeryNet expansion set /%"
数据集 | 指标 | 时刻一 | 时刻二 | 时刻三 | 时刻四 | 时刻五 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
旧 | 新 | 旧 | 新 | 旧 | 新 | 旧 | 新 | 旧 | 新 | ||||||
FF++ 扩充集 | 多分类 | - | 97.10 | 88.05 | 98.35 | 82.21 | 99.38 | 74.84 | 95.6 | - | - | ||||
二分类 | - | 97.10 | 89.53 | 98.40 | 84.69 | 99.53 | 85.56 | 99.99 | - | - | |||||
ForgeryNet 扩充集 | 多分类 | - | 94.72 | 96.14 | 96.88 | 89.39 | 94.71 | 88.76 | 82.29 | 85.47 | 69.68 | ||||
二分类 | - | 99.19 | 99.10 | 99.48 | 98.71 | 99.34 | 98.82 | 97.75 | 97.34 | 89.00 |
Table 9
The detection accuracy of our method and the existing methods on the last 5 tasks of the ForgeryNet expansion set /%"
任务11 | 任务12 | 任务13 | 任务14 | 任务15 | 平均 | |
---|---|---|---|---|---|---|
XceptionNet | 98.63 | 96.53 | 98.55 | 51.13 | 98.78 | 88.72 |
SRM | 97.63 | 98.58 | 98.63 | 50.53 | 95.63 | 88.20 |
F3net | 97.05 | 98.85 | 96.98 | 51.43 | 96.89 | 88.24 |
本文方法 | 99.07 | 98.43 | 99.00 | 73.58 | 99.08 | 93.83 |
[1] | 周文柏, 张卫明, 俞能海, 等. 人脸视频深度伪造与防御技术综述[J]. 信号处理, 2021, 37(12): 2338-2355. |
[2] |
张璐, 芦天亮, 杜彦辉. 人脸视频深度伪造检测方法综述[J]. 计算机科学与探索, 2023, 17(1): 1-26.
doi: 10.3778/j.issn.1673-9418.2205035 |
[3] | 曹申豪, 刘晓辉, 毛秀青, 等. 人脸伪造及检测技术综述[J]. 中国图象图形学报, 2022, 27(4): 1023-1038. |
[4] | HE K M, ZHANG X Y, REN S Q, et al. Deep Residual Learning for Image Recognition[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778. |
[5] | SABOUR S, FROSST N, HINTON G E. Dynamic Routing between Capsules[C]. Proceedings of the Annual Conference on Neural Information Processing Systems, 2016: 3859-3869. |
[6] | CHOLLET F. Xception: Deep Learning with Depthwise Separable Convolutions[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 1800-1807. |
[7] | TAN M, LE Q. Efficientnet: Rethinking Model Scaling for Convolutional Neural Networks[C]. Proceedings of the International Conference on Machine Learning, 2019: 6105-6114. |
[8] | YU Y, NI R, ZHAO Y. Mining Generalized Features for Detecting AI-Manipulated Fake Faces[EB/OL]. [2022-10-20]. https://arxiv.org/abs/2010.14129. |
[9] | LIU Z, QI X J, TORR P H S. Global Texture Enhancement for Fake Face Detection in the Wild[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 8057-8066. |
[10] | 杨少聪, 王健, 孙运莲, 等. 多级特征全局一致性的人脸伪造检测[J]. 中国图象图形学报, 2022, 27(9): 2708-2720. |
[11] | LI L Z, BAO J M, ZHANG T, et al. Face X-Ray for More General Face Forgery Detection[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 5000-5009. |
[12] | DANG H, LIU F, STEHOUWER J, et al. On the Detection of Digital Face Manipulation[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 5780-5789. |
[13] | 蒋小玉, 刘春晓. 边缘与区域不一致性引导下的图像拼接篡改检测网络[J]. 中国图象图形学报, 2021, 26(10): 2411-2420. |
[14] | GÜERA D, DELP E J. Deepfake Video Detection using Recurrent Neural Networks[C]. Proceedings of the IEEE International Conference on Advanced Video and Signal Based Surveillance, 2018: 1-6. |
[15] | AMERINI I, CALDELLI R. Exploiting Prediction Error Inconsistencies through LSTM-based Classifiers to Detect Deepfake Videos[C]. Proceedings of the ACM Workshop on Information Hiding and Multimedia Security, 2020: 97-102. |
[16] | MASI I, KILLEKAR A, MASCARENHAS R M, et al. Two-Rranch Recurrent Network for Isolating Deepfakes in Videos[C]. Proceedings of the European Conference on Computer Vision, 2020: 667-684. |
[17] |
FEI J W, XIA Z H, YU P P, et al. Exposing AI-Generated Videos with Motion Magnification[J]. Multimedia Tools and Applications, 2021, 80: 30789-30802.
doi: 10.1007/s11042-020-09147-3 |
[18] | LI Y Z, CHANG M C, LYU S W. In Ictu Oculi: Exposing AI Created Fake Videos by Detecting Eye Blinking[C]. Proceedings of the IEEE International Workshop on Information Forensics and Security, 2018: 1-7. |
[19] | YANG X, LI Y Z, LYU S. Exposing Deep Fakes Using Inconsistent Head Poses[C]. Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, 2019: 8261-8265. |
[20] | MATERN F, RIESS C, STAMMINGER M. Exploiting Visual Artifacts to Expose Deepfakes and Face Manipulations[C]. Proceedings of the IEEE Winter Applications of Computer Vision Workshops, 2019: 83-92. |
[21] | CIFTCI U A, DEMIR I, YIN L. FakeCatcher: Detection of Synthetic Portrait Videos using Biological Signals[C]. Proceedings of the IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020: 1-1. |
[22] | QI H, GUO Q, JUEFEI-XU F, et al. DeepRhythm: Exposing DeepFakes with Attentional Visual Heartbeat Rhythms[C]. Proceedings of the ACM International Conference on Multimedia, 2020: 4318-4327. |
[23] | REBUFFI S A, KOLESNIKOV A, SPERL G, et al. iCaRL: Incremental Classifier and Representation Learning[C]. Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, 2017: 5533-5542. |
[24] | HU X T, TANG K H, MIAO C Y, et al. Distilling Causal Effect of Data in Class-Incremental Learning[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 3956-3965. |
[25] | LI Z Z, HOIEM D. Learning Without Forgetting[C]. Proceedings of the European Conference on Computer Vision, 2016: 614-629. |
[26] | KIRKPATRICKA J, PASCANU R, RABINOWITZ N, et al. Overcoming Catastrophic Forgetting Inneural Networks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(13): 3521-3526. |
[27] | MALLYA A, LAZEBNIK S. PackNet: Adding Multiple Tasks to a Single Network by Iterative Pruning[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018: 7765-7773. |
[28] | ZHANG C, SONG N, LIN G, et al. Few-Shot Incremental Learning With Continually Evolved Classifiers[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 12450-12459. |
[29] | YAN S P, XIE J W, HE X M. DER: Dynamically Expandable Representation for Class Incremental Learning[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 3013-3022. |
[30] | MARRA F, SALTORI C, BOATO G, et al. Incremental Learning for the Detection and Classification of GAN-Generated Images[C]. Proceedings of the IEEE International Workshop on Information Forensics and Security, 2019: 1-6. |
[31] | RÖSSLER A, COZZOLINO D, VERDOLIVA L, et al. FaceForensics++: Learning to Detect Manipulated Facial Images[C]. Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 1-11. |
[32] | TORZDF, KVROOMAN, KILROYTHETHIRD. DeepFakes Github[OL]. [2022-10-20] https://github.com/deepfakes/faceswap. |
[33] | THIES J, ZOLLHOFER M, STAMMINGER M, et al. Face2face: Real-time Face Capture and Reenactment of RGB Videos[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 2387-2395. |
[34] | Marek. FaceSwap[OL].[2022-10-20]. https://github.com/MarekKowalski/FaceSwap. |
[35] | THIES J, ZOLLHOFER M, NIESSNER M. Deferred Neural Rendering: Image Synthesis using Neural Textures[J]. ACM Transactions on Graphics, 2019, 38(4): 1-12. |
[36] | HE Y N, GAN B, CHEN S Y, et al. ForgeryNet: A Versatile Benchmark for Comprehensive Forgery Analysis[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 4358-4367. |
[37] | SRIVASTAVA Y, MURALI V, DUBEY S R. A Performance Comparison of Loss Functions for Deep Face Recognition[EB/OL]. 2019. [2022-10-20]. https://arxiv.org/abs/1901.05903. |
[38] |
KARRAS T, LAINE S, AILA T. A Style-Based Generator Architecture for Generative Adversarial Networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(12): 4217-4228.
doi: 10.1109/TPAMI.2020.2970919 |
[39] | KUMAR N, BELHUMEUR P, NAYAR S. FaceTracer: A Search Engine for Large Collections of Images with Faces[C]. Proceedings of the European Conference on Computer Vision, 2008: 340-353. |
[40] | LI Y Z, YANG X, SUN P, et al. Celeb-DF: A Large-Scale Challenging Dataset for DeepFake Forensics[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 3207-3216. |
[41] | KUMAR N, BERG A C, BELHUMEUR P N, et al. Attribute and Simile Classifiers for Face Verification[C]. Proceedings of the IEEE International Conference on Computer Vision, 2009: 365-372. |
[42] | ZHANG Z P, LUO P, LOY C, et al. Facial Landmark Detection by Deep Multi-task Learning[C]. Proceedings of the European Conference on Computer Vision, 2014: 94-108. |
[43] | ROTHE R, TIMOFTE R, GOOL L V. DEX: Deep EXpectation of Apparent Age from a Single Image[C]. Proceedings of the IEEE International Conference on Computer Vision Workshops, 2015: 10-15. |
[44] | MEIDINE L T N, GRANGER E, KIRAN M, MORIN L A B. A Comparison of CNN-based Face and Head Detectors for Real-Time Video Surveillance Applications[C]. Proceedings of the International Conference on Image Processing Theory, 2017: 1-7. |
[45] | GHAZI M M, EKENEL H K. A Comprehensive Analysis of Deep Learning Based Representation for Face Recognition[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2016: 102-109. |
[46] | ZHANG Z F, SONG Y, QI H. Age Progression/Regression by Conditional Adversarial Autoencoder[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 4352-4360. |
[47] |
CHENG J C, LI Y L, WANG J L, et al. Exploiting Effective Facial Patches for Robust Gender Recognition[J]. Tsinghua Science and Technology, 2019, 24(3): 333-345.
doi: 10.26599/TST.2018.9010090 |
[48] | DENG J, GUO J, VERVERAS E, et al. RetinaFace: Single-Shot Multi-Level Face Localisation in the Wild[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 5202-5211. |
[49] | WELLING M. Herding Dynamical Weights to Learn[C]. Proceedings of the Annual International Conference on Machine Learning, 2009: 1121-1128 |
[50] | QIAN Y Y, YIN G J, SHENG L, et al. Thinking in Frequency: Face Forgery Detection by Mining Frequency-aware Clues[C]. Proceedings of the European Conference on Computer Vision, 2020: 86-103. |
[51] | LUO Y C, ZHANG Y, YAN J C, et al. Generalizing Face Forgery Detection with High-frequency Features[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 16312-16321. |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||