Frontiers of Data and Computing ›› 2023, Vol. 5 ›› Issue (4): 57-76.
CSTR: 32002.14.jfdc.CN10-1649/TP.2023.04.006
doi: 10.11871/jfdc.issn.2096-742X.2023.04.006
• Special Issue: Basic Research • Previous Articles Next Articles
Received:2023-06-30
Online:2023-08-20
Published:2023-08-23
LI Dongqiao, WANG Xi. Study on the R&D Pipeline Analysis of mRNA Technology Based on Cortellis Database[J]. Frontiers of Data and Computing, 2023, 5(4): 57-76, https://cstr.cn/32002.14.jfdc.CN10-1649/TP.2023.04.006.
Table 1
Mainly distribution and R&D status of mRNA products"
| 机构名称 | 机构所属国家 | 临床前 阶段 | 初步发现 阶段 | 临床 Ⅰ期 | 临床 Ⅱ期 | 临床 Ⅲ期 | 预注册 | 注册 | 上市 | 产品 总数 |
|---|---|---|---|---|---|---|---|---|---|---|
| Moderna | 美国 | 22 | 3 | 13 | 16 | 7 | — | — | 3 | 64 |
| BioNTech | 德国 | 10 | — | 4 | 6 | 1 | 1 | 1 | 2 | 25 |
| CureVac | 德国 | 6 | 3 | 4 | — | — | — | — | — | 13 |
| 斯微(上海)生物科技有限公司 | 中国 | 8 | 3 | — | — | 1 | — | — | — | 12 |
| Pfizer | 美国 | 3 | — | 1 | 2 | 1 | 1 | 1 | 2 | 11 |
| Arcturus Therapeutics | 加拿大 | 4 | — | — | 3 | — | 1 | — | — | 8 |
| Sanofi | 法国 | 4 | 1 | 3 | — | — | — | — | — | 8 |
| Translate Bio | 美国 | 5 | — | 1 | 1 | — | — | — | — | 7 |
| Glaxo Smith Kline | 英国 | 1 | — | 5 | — | — | — | — | — | 6 |
| Acuitas Therapeutics | 加拿大 | 5 | — | — | — | — | — | — | — | 5 |
| Eyam Vaccines and Immunotherapeutics | 加拿大 | 5 | — | — | — | — | — | — | — | 5 |
| Providence Therapeutics Holdings | 加拿大 | 3 | — | — | 1 | — | — | — | — | 4 |
| Ziphius vaccines | 比利时 | 4 | — | — | — | — | — | — | — | 4 |
Table 2
Mainly target distribution and development stage of mRNA products"
| 靶点 | 报道不活跃的产品 | 临床前阶段 | 初步发现阶段 | 临床Ⅰ期 | 临床Ⅱ期 | 临床Ⅲ期 | 预注册 | 注册 | 上市 | 产品 总数 |
|---|---|---|---|---|---|---|---|---|---|---|
| COVID19尖峰糖蛋白 | — | 20 | 1 | 7 | 9 | 7 | 1 | 1 | 5 | 51 |
| CD40配体/基因 | 1 | 3 | — | — | 1 | — | — | — | — | 5 |
| CFTR基因 | 1 | 3 | — | — | 1 | — | — | — | — | 5 |
| 血凝素 | — | 1 | 1 | 1 | 1 | — | — | — | — | 4 |
| CD70基因 | — | 2 | — | — | 1 | — | — | — | — | 3 |
| OX-40受体 | — | 1 | — | 1 | 1 | — | — | — | — | 3 |
| TLR4基因 | — | 2 | — | — | 1 | — | — | — | — | 3 |
| 基底蛋白 | — | 1 | — | 1 | — | — | — | — | — | 2 |
| Claudin 18 | — | — | — | — | 2 | — | — | — | — | 2 |
| DMPK基因 | 1 | 1 | — | — | — | — | — | — | — | 2 |
| DNAI1基因 | — | 2 | — | — | — | — | — | — | — | 2 |
| 人巨细胞病毒糖蛋白B | — | — | — | 1 | — | 1 | — | — | — | 2 |
| 人巨细胞病毒糖蛋白H | — | — | — | 1 | — | 1 | — | — | — | 2 |
| 白细胞介素-12基因 | — | 1 | — | 1 | — | — | — | — | — | 2 |
| 白细胞介素-2基因 | 1 | — | — | 1 | — | — | — | — | — | 2 |
| 白细胞介素-7基因 | — | 1 | — | 1 | — | — | — | — | — | 2 |
| mRNA帽鸟嘌呤N7甲基转移酶 | — | 2 | — | — | — | — | — | — | — | 2 |
| OTC基因 | — | 1 | — | — | 1 | — | — | — | — | 2 |
| 程序性细胞死亡配体1 | — | 1 | — | — | 1 | — | — | — | — | 2 |
| Ras GTPase | 1 | — | 1 | — | — | — | — | — | — | 2 |
| 呼吸道合胞病毒蛋白F | — | 1 | — | — | — | 1 | — | — | — | 2 |
| SIRT3基因 | — | 2 | — | — | — | — | — | — | — | 2 |
| 剪接因子 | — | 1 | — | — | 1 | — | — | — | — | 2 |
| Wilms肿瘤蛋白 | — | 1 | — | — | 1 | — | — | — | — | 2 |
Table 3
Mainly indications and development status of mRNA products"
| 适应症 | 临床前 阶段 | 初步发现 阶段 | 临床 Ⅰ期 | 临床 Ⅱ期 | 临床 Ⅲ期 | 预注册 | 注册 | 上市 | 产品 总数 |
|---|---|---|---|---|---|---|---|---|---|
| COVID-19感染 | 38 | 8 | 9 | 16 | 8 | 2 | 1 | 5 | 87 |
| 流感病毒感染 | 7 | 1 | 6 | 3 | 1 | — | — | — | 18 |
| HIV感染 | 4 | — | 5 | 1 | — | — | — | — | 10 |
| 胰腺癌 | 3 | 1 | 3 | 2 | — | — | — | — | 9 |
| 呼吸道合胞病毒感染 | 3 | 1 | 3 | — | 1 | — | — | — | 8 |
| 乳腺癌 | 3 | — | 1 | 3 | — | — | — | — | 7 |
| 卵巢癌 | 2 | — | 2 | 3 | — | — | — | — | 7 |
| 结肠直肠癌 | 1 | — | 1 | 3 | — | — | — | — | 6 |
| 黑色素瘤 | 1 | — | 1 | 4 | — | — | — | — | 6 |
| 转移性非小细胞肺癌 | 1 | — | — | 3 | 1 | — | — | — | 5 |
| 囊性纤维化 | 3 | — | — | 1 | — | — | — | — | 4 |
| 肝炎 | 2 | — | 2 | — | — | — | — | — | 4 |
| EB病毒病毒感染 | 2 | — | 1 | — | — | — | — | — | 3 |
| 胶质母细胞瘤 | 1 | — | — | 1 | 1 | — | — | — | 3 |
| Kartagener综合征 | 3 | — | — | — | — | — | — | — | 3 |
| 鸟氨酸转氨酶缺乏症 | 2 | — | — | 1 | — | — | — | — | 3 |
| 乳头瘤病毒感染 | 1 | 2 | — | — | — | — | — | — | 3 |
| 呼吸窘迫综合征 | 2 | 1 | — | — | — | — | — | — | 3 |
| 水痘带状疱疹病毒感染 | 2 | 1 | — | — | — | — | — | — | 3 |
Table 4
Mainly R&D institutions of mRNA products in field of infectious diseases in China and the United States (Number≥2)"
| 研发机构 | 机构所属国家 | 临床前阶段 | 初步发现阶段 | 临床Ⅰ期 | 临床Ⅱ期 | 临床Ⅲ期 | 预注册 | 注册 | 上市 | 产品总数 |
|---|---|---|---|---|---|---|---|---|---|---|
| Moderna | 美国 | 9 | 1 | 9 | 8 | 7 | — | — | 3 | 37 |
| Pfizer | 美国 | 3 | — | 1 | 1 | 1 | 1 | 1 | 2 | 10 |
| 斯微(上海)生物科技有限公司 | 中国 | 3 | 2 | — | — | 1 | — | — | — | 6 |
| National Institutes of Health | 美国 | 1 | — | 5 | — | — | — | — | — | 6 |
| Arcturus Therapeutics | 美国 | 1 | — | — | 2 | — | 1 | — | — | 4 |
| 云顶新耀有限公司 | 中国 | 2 | — | — | 1 | — | — | — | — | 3 |
| Translate Bio MA | 美国 | 2 | — | 1 | — | — | — | — | — | 3 |
| 上海复星医药集团 | 中国 | — | — | 1 | — | — | — | — | 1 | 2 |
| 西藏药业公司 | 中国 | 1 | — | — | — | 1 | — | — | — | 2 |
| 云南沃森生物技术股份有限公司 | 中国 | — | 1 | — | — | 1 | — | — | — | 2 |
| International AIDS Vaccine Initiative | 美国 | — | — | — | — | — | — | — | — | 2 |
| Merck | 美国 | 1 | 1 | — | — | — | — | — | — | 2 |
| RNA Immune | 美国 | 2 | — | — | — | — | — | — | — | 2 |
| Sorrento Therapeutics | 美国 | 2 | — | — | — | — | — | — | — | 2 |
| Tiba Biotech | 美国 | — | 2 | — | — | — | — | — | — | 2 |
Table 5
Mainly R&D institutions of mRNA products in field of neoplasm (Number≥2)"
| 研发机构 | 机构所属国家 | 临床前阶段 | Discovery | 临床I期 | 临床II期 | 产品总数 |
|---|---|---|---|---|---|---|
| BioNTech | 德国 | 2 | — | 3 | 4 | 9 |
| Moderna | 美国 | 1 | 1 | 3 | 4 | 9 |
| 斯微(上海)生物科技有限公司 | 中国 | 6 | — | — | — | 6 |
| Nutcracker Therapeutics | 美国 | 1 | 2 | — | — | 3 |
| Astra Zeneca | 英国 | 1 | — | 1 | — | 2 |
| CureVac | 德国 | 1 | 1 | — | — | 2 |
| Sanofi | 法国 | 1 | — | 1 | — | 2 |
| Strand Therapeutics | 美国 | 1 | 1 | — | — | 2 |
Table 6
Mainly R&D institutions of mRNA products in field of endocrine/metabolic"
| 研发机构 | 机构所属 国家 | 临床前阶段 | 初步发现阶段 | 临床 Ⅰ期 | 临床 Ⅱ期 | 上市 | 产品总数 |
|---|---|---|---|---|---|---|---|
| Moderna | 美国 | 6 | 1 | — | 3 | — | 10 |
| Arcturus Therapeutics | 美国 | 1 | — | — | 1 | — | 2 |
| Giddi Pharma | 中国 | — | — | — | — | 1 | 1 |
| Ionis Pharmaceuticals | 加拿大 | — | — | — | 1 | — | 1 |
| Maastricht University | 荷兰 | 1 | — | — | — | — | 1 |
| Modema Therapeutics | 美国 | 1 | — | — | — | — | 1 |
| Nexturn Bio | 韩国 | — | — | 1 | — | — | 1 |
| PTC Therapeutics | 美国 | — | — | — | — | 1 | 1 |
| Radboud Centre for Mitochondrial Medicine | 全球性组织 | 1 | — | — | — | — | 1 |
| The Institute for Life Changing Medicines | 美国 | 1 | — | — | — | — | 1 |
| University of Navarra | 西班牙 | — | 1 | — | — | — | 1 |
| University of Pittsburgh | 美国 | 1 | — | — | — | — | 1 |
| University of Utah | 美国 | 1 | — | — | — | — | 1 |
Table 7
mRNA COVID-19 vaccines in the clinical stage II/III"
| 名称 | 临床阶段 | 研发机构 | 递送技术 |
|---|---|---|---|
| LVRNA-009 | 临床Ⅱ期 | 珠海丽凡达生物技术有限公司 | LNP |
| SARS-CoV-2 vaccine (mRNA vaccine, COVID-19, Omicron variant), Suzhou Abogen Biosciences | 临床Ⅱ期 | 苏州艾博生物科技有限公司 | LNP |
| mRNA-1073 | 临床Ⅱ期 | Moderna | LNP |
| mRNA-1273.351 | 临床Ⅱ期 | Moderna | LNP |
| mRNA-1283 | 临床Ⅱ期 | Moderna | LNP |
| mRNA-1273.211 | 临床Ⅲ期 | Moderna | LNP |
| mRNA-1283.529 | 临床Ⅱ期 | Moderna | LNP |
| mRNA-1273.529 | 临床Ⅲ期 | Moderna | LNP |
| mRNA-1273.213 | 临床Ⅲ期 | Moderna | LNP |
| mRNA-1273.617 | 临床Ⅲ期 | Moderna | LNP |
| mRNA-1283.211 | 临床Ⅱ期 | Moderna | LNP |
| EG-COVID | 临床Ⅱ期 | eyeGENE; PharmCADD | LPX |
| DS-5670 | 临床Ⅲ期 | Daiichi Sankyo Company Limited; University of Tokyo | LNP |
| SYS-6006 | 临床Ⅱ期 | 石药集团有限公司 | LNP |
| ChulaCov19 mRNA vaccine | 临床Ⅱ期 | Chulalongkorn University; University of Pennsylvania | LNP |
| ARCoV | 临床Ⅲ期 | 中国人民解放军军事医学科学院; 云南沃森生物技术股份有限公司 | LNP |
| BNT-162b3 | 临床Ⅱ期 | BioNTech; Pfizer | — |
| BNT-162b2 Omi (BA.1) | 临床Ⅲ期 | BioNTech; Pfizer | LNP |
| BNT-162b5 Bivalent (WT/OMI BA.2) | 临床Ⅱ期 | BioNTech; Pfizer | — |
| PTX-COVID19-B | 临床Ⅱ期 | Biological E; Everest Medicines; Providence Therapeutics Holdings; University of Toronto | — |
| SW-0123 | 临床Ⅲ期 | Biocad; 益诺思; 斯微(上海)生物科技有限公司; 西藏药业; 同济大学 | — |
| mRNA vaccine (COVID-19, delta/omicron variant), Argorna Pharmaceuticals/Guangzhou RiboBio/Guangzhou Institutes of Biomedicine and Health/Guangzhou National Laboratory | 临床Ⅱ期 | 阿格纳生物制药有限公司; 广州生物医药与健康研究院; 广州国家实验室; 锐博制药 | — |
| ARCT-165 | 临床Ⅱ期 | Arcturus Therapeutics | LPX |
| ARCT-021 | 临床Ⅱ期 | Arcturus Therapeutics | — |
Table 9
mRNA tumor therapeutic vaccines in the clinical stage II / III"
| 名称 | 研发机构 | 临床阶段 | 适应症 |
|---|---|---|---|
| NCI-4650 | Moderna; National Cancer Institute | 临床Ⅱ期 | 转移性胃肠道癌、转移性泌尿生殖道癌、Ⅳ期黑色素瘤 |
| mRNA-4157 | Merck; Moderna | 临床Ⅱ期 | 黑色素瘤 |
| BNT-112 | BioNTech | 临床Ⅱ期 | 激素难治性前列腺癌 |
| umitrelimorgene autodencel | Duke University; Immunomic Thera-peutics | 临床Ⅱ期 | 胶质母细胞瘤 |
| dendritic cell vaccine transfected with hTERT-, survivin- and tumor cell derived mRNA (cancer), | University of Oslo | 临床Ⅲ期 | 胶质母细胞瘤 |
| WT1-targeted autologous dendritic cell vaccine (cancer) | University of Antwerp | 临床Ⅱ期 | 间皮瘤 |
| autogene cevumeran | BioNTech; GeneTech | 临床Ⅱ期 | 转移性膀胱癌、转移性乳腺癌、转移型大肠癌、转移性头颈癌、转移非小细胞肺癌、转移性肾癌、胰腺癌、Ⅳ期黑色素瘤 |
| mRNA-4359 | Moderna | 临床Ⅱ期 | 基底细胞癌、转移性膀胱癌、转移乳腺癌、转移结直肠癌、转移头颈癌、转移非小细胞肺癌、鳞状细胞癌、Ⅲ期黑色素瘤、Ⅳ期黑色素瘤 |
Table 10
mRNA drugs in the clinical stage II / III"
| 名称 | 研发机构 | 研发阶段 | 适应症 |
|---|---|---|---|
| LUNAR-OTC | Arcturus Therapeutics | 临床II期 | 鸟氨酸转氨酶缺乏症 |
| BNT-142 | BioNTech | 临床II期 | 宫内膜样癌、转移性非小细胞肺癌、转移性卵巢癌|转移睾丸癌 |
| BNT-141 | BioNTech | 临床II期 | 胆道癌、转移性结直肠癌、转移食管癌、转移卵巢癌、转移胰腺癌、转移胃癌 |
| mRNA based immunotherapies (TriMix, breast cancer), eTheRNA | eTheRNA immunotherapies | 临床II期 | 乳腺肿瘤 |
| sapablursen | Ionis Pharmaceuticals | 临床Ⅱ期 | β地中海贫血、真性红细胞增多症 |
| ISTH-0036 | Isarna Therapeutics | 临床Ⅱ期 | 糖尿病性黄斑水肿、青光眼、湿龄相关性黄斑变性 |
| mRNA-1030 | Moderna | 临床Ⅱ期 | 流感病毒A感染、流感病毒B感染 |
| mRNA-2416 | Moderna | 临床Ⅱ期 | 转移性卵巢癌、T细胞淋巴瘤 |
| mRNA-3745 | Moderna | 临床Ⅱ期 | 糖原贮积病 |
| mRNA-3927 | Moderna | 临床Ⅱ期 | 丙酸血症 |
| mRNA-1020 | Moderna | 临床Ⅱ期 | 流感病毒A感染、流感病毒B感染 |
| mRNA-1010 | Moderna | 临床Ⅲ期 | 流感病毒A感染、流感病毒B感染 |
| mRNA-3705 | Moderna | 临床Ⅱ期 | 甲基丙二酸血症 |
| mRNA-1345 | Moderna | 临床Ⅲ期 | 呼吸道合胞病毒感染 |
| AZD-8601 | Moderna/AstraZeneca | 临床Ⅱ期 | 心肌梗死 |
| PTC-518 | PTC Therapeutics | 临床Ⅱ期 | 亨廷顿舞蹈症 |
| mRNA-DC-CTL | 上海比昂生物医药科技有限公司 | 临床Ⅲ期 | 转移性非小细胞肺癌 |
| MRT-5005 | Translate Bio MA | 临床Ⅱ期 | 囊性纤维化 |
| [1] | WENG Y H, LI C H, YANG T R, et al. The challenge and prospect of mRNA therapeutics landscape[J]. Biotec-hnology Advances, 2020, 40: 107534. |
| [2] |
SAHIN U, KARIKO K, TURECI O, et al. mRNA-based therapeutics--developing a new class of drugs[J]. Nature Reviews Drug Discovery, 2014, 13(10): 759-80.
doi: 10.1038/nrd4278 pmid: 25233993 |
| [3] |
XIAO Y F, TANG ZH T, HUANG XG, et al. Emer-ging mRNA technologies: delivery strategies and biom-edical applications[J]. Chemical Society Reviews, 2022, 51(10): 3828-3845.
doi: 10.1039/D1CS00617G |
| [4] |
FERDOWS B E, PATEL D N, CHEN W, et al. RNA cancer nanomedicine: nanotechnology-mediated RNA therapy[J]. Nanoscale, 2022, 14(12): 4448-4455.
doi: 10.1039/D1NR06991H |
| [5] | MIT Technology Review. 10 Breakthrough Technol-ogies 2021[EB/OL]. [2021-02-24]. https://www.technolog-yreview.com/2021/02/24/1014369/10-breakthrough-technologies-2021/. |
| [6] |
JACOB F, MONOD J. Genetic regulatory mechanisms in the synthesis of proteins[J]. Journal Molecular Biology, 1961, 3(3): 318-356.
doi: 10.1016/S0022-2836(61)80072-7 |
| [7] |
BRENNER S, JACOB F, MESELSON M. An Unstable Intermediate Carrying Information from Genes to Ribo-somes for Protein Synthesis[J]. Nature, 1961, 190 (477): 576-581.
doi: 10.1038/190576a0 |
| [8] | FACULTAD DE FARMACIA. Jacob/Meselson/Brenner: discovery of messenger RNA (mRNA)[EB/OL]. [2023-07-20]. https://farmacia.ugr.es/microbiologia/baseDatos/documentosPDF/experimentos-8-documentoPDF2.pdf. |
| [9] |
LANGER R and FOLKMAN J. Polymers for the sus-tained release of proteins and other macromolecules[J]. Nature, 1976, 263(5580): 797-800.
doi: 10.1038/263797a0 |
| [10] | MELTON D A, KRIEG P A, REBAGLIATI M R, et al. Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter[J]. Nucleic Acids Rese-arch, 1984, 12(18)7035-7056. |
| [11] |
WOLFF J A, MALONE R W, WILLIAMS P, et al. Direct gene transfer into mouse muscle in vivo[J]. Science, 1990, 247(4949Pt1): 1465-1468.
doi: 10.1126/science.1690918 |
| [12] | BOCZKOWSKI D, NAIR S K, SNYDER D, et al. Dendritic cells pulsed with RNA are potent antigen-presenting cells in vitro and in vivo[J]. Journal of Exper-imental Medicine, 1996, 184(2): 465-472. |
| [13] | HEISER A, COLEMAN D, DANNULL J, et al. Autologous dendritic cells transfected with prostate-specific antigen RNA stimulate CTL responses against metastatic prostate tumors[J]. Journal of Clinical Investi-gation, 2002, 109(3): 409-417. |
| [14] |
KARIKO K, BUCKSTEIN M, NI H P, et al. Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA[J]. Immunity, 2005, 23(2): 165-175.
doi: 10.1016/j.immuni.2005.06.008 pmid: 16111635 |
| [15] |
WEIDE B, PASCOLO S, SCHEEL B, et al. Direct Injection of Protamine-protected mRNA: Results of a Phase 1/2 Vaccination Trial in Metastatic Melanoma Patients[J]. Journal of Immunotherapy, 2009, 32(5): 498-507.
doi: 10.1097/CJI.0b013e3181a00068 pmid: 19609242 |
| [16] |
SAHIN U, KARIKO K, TURECI Ö. mRNA-based ther-apeutics——developing a new class of drugs[J]. Nature Reviews Drug Discovery, 2014, 13(10): 759-780.
doi: 10.1038/nrd4278 |
| [17] |
WEISSMAN D. mRNA transcript therapy[J]. Expert Review Vaccines, 2015, 14(2): 265-281.
doi: 10.1586/14760584.2015.973859 |
| [18] |
WARREN L, MANOS P D, AHFELDT T, et al. Highly efficient reprogramming to pluripotency and directed diff-erentiation of human cells with synthetic modified mRNA[J]. Cell Stem Cell, 2010, 7(5): 618-630.
doi: 10.1016/j.stem.2010.08.012 |
| [19] |
GEALL A J, VERMA A, OTTEN, G R, et al. Nonviral delivery of self-amplifying RNA vaccines[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(36): 14604-14609.
doi: 10.1073/pnas.1209367109 pmid: 22908294 |
| [20] |
SAHIN U, DERHOVANESSIAN E, MILLER M, et al. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer[J]. Nature, 2017, 547(7662): 222-226.
doi: 10.1038/nature23003 |
| [21] | FDA. FDA Takes Key Action in Fight Against COV-ID-19 By Issuing Emergency Use Authorization for First COVID-19 Vaccine[EB/OL]. [2020-12-11]. https://www.fda.gov/news-events/press-announcements/fda-takes-key-action-fight-against-covid-19-issuing-emergency-use-authorization-first-covid-19. |
| [22] |
AREVALO C P, BOLTON M J, LE S V, et al. A multi-valent nucleoside-modified mRNA vaccine against all known influenza virus subtypes[J]. Science, 2022, 378 (6622): 899-904.
doi: 10.1126/science.abm0271 |
| No related articles found! |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||

