[1] |
赵瑞杰, 施勇, 张涵, 等. 基于TF-IDF 的 Webshell 文件检测[J]. 计算机科学, 2020, 47(11A):363-367.
doi: 10.11896/jsjkx.200100064
|
[2] |
Hou Y T, Chang Y, Chen T, et al. Malicious web content detection by machine learning[J]. expert systems with applications, 2010, 37(1):55-60.
doi: 10.1016/j.eswa.2009.05.023
|
[3] |
Deng L Y, Lee D L, Chen Y H, et al. Lexical analysis for the webshell attacks[C]// 2016 International Sympo-sium on Computer,Consumer and Control (IS3C), IEEE, 2016:579-582.
|
[4] |
Mingkun X, Xi C, Yan H. Design of software to search ASP web shell[J]. Procedia Engineering, 2012, 29:123-127.
doi: 10.1016/j.proeng.2011.12.680
|
[5] |
Behrens S, Hagen B. Web shell detection using NeoPI[EB/OL].[2022-09-22]. http://re-sources.infosecinstitute.com/web-shell-detection.
|
[6] |
Hansen R J, Patterson M L. Guns and butter:Towards formal axioms of input validation[J]. Black Hat USA, August, 2005, 1(8):1-6.
|
[7] |
郑毅. 基于机器学习的 IDS 研究[J]. 现代电子技术, 2006, 29(21):98-99.
|
[8] |
田新广, 高立志, 张尔扬. 新的基于机器学习的入侵检测方法[J]. 通信学报, 2006, 27(6):108-114.
|
[9] |
胡建康, 徐震, 马多贺, 等. 基于决策树的 Webshell 检测方法研究[J]. 网络新媒体技术, 2012, 1(6):15-19.
|
[10] |
孟正, 梅瑞, 张涛, 等. Linux 下基于 SVM 分类器的 WebShell 检测方法研究[J]. 信息网络安全, 2014, 5(5):5-9.
|
[11] |
Xie M, Hu J. Evaluating host-based anomaly detection systems:A preliminary analysis of adfa-ld[C]// 2013 6th international congress on image and signal processing (CISP), IEEE, 2013, 3:1711-1716.
|
[12] |
茅雨绮, 施勇, 薛质. 基于抽象语法树和XGBoost的jsp_webshell检测方法研究[J]. 通信技术, 2020, 53(10):2543-2549.
|
[13] |
Sun X, Lu X, Dai H. A matrix decomposition based webshell detection method[C]// Proceedings of the 2017 International Conference on Cryptography, Security and Privacy, 2017:66-70.
|
[14] |
张涵, 薛质, 施勇. 基于多层神经网络的 Webshell 改进检测方法研究[J]. 通信技术, 2019, 52(1):179-183.
|
[15] |
姜天. 基于卷积神经网络的 Webshell 检测方法研究[J]. 信息技术与网络安全, 2019, 38(7): 27-31.
|
[16] |
吴斌, 赵力. 基于深度学习和半监督学习的 webshell 检测方法[J]. 信息技术与网络安全, 2018, 37(8) :19-22.
|
[17] |
周龙, 王晨, 史崯. 基于RNN的Webshell检测研究[J]. 计算机工程与应用, 2020, 56(14):88-92.
doi: 10.3778/j.issn.1002-8331.1904-0420
|
[18] |
Mikolov T, Chen K, Corrado G, et al. Efficient estimation of word representations in vector space[J]. arXiv preprint arXiv:1301.3781, 2013.
|
[19] |
Miyato T, Dai A M, Goodfellow I. Adversarial training methods for semi-supervised text classification[J]. arXiv preprint arXiv:1605.07725, 2016.
|
[20] |
Chung J, Gulcehre C, Cho K H, et al. Empirical eval-uation of gated recurrent neural networks on sequence modeling[J]. arXiv preprint arXiv:1412.3555, 2014.
|
[21] |
Hochreiter S, Schmidhuber J. Long short-term memory[J]. Neural computation, 1997, 9(8):1735-1780.
pmid: 9377276
|
[22] |
Kim Y. Convolutional Neural Networks for Sentence Cla-ssification[EB/OL].[2022-09-22]. https://arxiv.org/pdf/1408.5882.pdf.
|
[23] |
Joulin A, Grave E, Bojanowski P, et al. Bag of tricks for efficient text classification[J]. arXiv preprint arXiv: 1607. 01759,2016.
|
[24] |
崔艳鹏, 史科杏, 胡建伟. 基于 XGBoost 算法的 Webshell 检测方法研究[J]. 计算机科学, 2018, 45(6A):375-379.
|
[25] |
Li T, Ren C, Fu Y, et al. Webshell detection based on the word attention mechanism[J]. IEEE Access, 2019, 7: 185140-185147.
doi: 10.1109/ACCESS.2019.2959950
|
[26] |
Lv Z H, Yan H B, Mei R. Automatic and accurate detection of webshell based on convolutional neural network[C]// China Cyber Security Annual Conference, Springer, Si-ngapore, 2018:73-85.
|
[27] |
Qi L, Kong R, Lu Y, et al. An end-to-end detection method for webshell with deep learning[C]// 2018 Eighth Inter-national Conference on Instrumentation & Measurement, Computer, Communication and Control (IMCCC), IEEE, 2018:660-665.
|