[1] |
PHILIP C L, ZHANG C Y. Data-intensive applications, challenges, techniques and technologies: a survey on big data[J]. Information Sciences, 2014, 275:314-347. DOI: 10.1016/j.ins.2014.01.015.
doi: 10.1016/j.ins.2014.01.015
|
[2] |
钟运琴, 方金云, 赵晓芳. 大规模时空数据分布式存储方法研究[J]. 高技术通讯, 2013, 23(12):1219-1229.
|
[3] |
CHAOWEI YANG, MICHAEL GOODCHILD, QUN-YING HUANG, et al. Spatial cloud computing: how can the geospatial sciences use and help shape cloud computing?[J]. International Journal of Digital Earth, 2011, 4(4):305-329.
doi: 10.1080/17538947.2011.587547
|
[4] |
张福浩, 张明波, 张志然, 等. 分布式空间数据库安全机制探讨[J]. 测绘通报, 2016(1):41-44.
|
[5] |
王文生, 郭雷风. 大数据技术农业应用[J]. 数据与计算发展前沿, 2020, 2(2):101-110.DOI: 10.11871/jfdc.issn.2096-742X.2020.02.008.PID: 21.86101.2/jfdc.2096-742X.2020.02.008.
|
[6] |
张嘉, 白晓飞, 陶超, 张小桐. 大规模空间矢量数据分布式存储与计算优化[J]. 计算机系统应用, 2020, 29(12):251-256. http://www.c-s-a.org.cn/1003-3254/7724.html.
|
[7] |
宋峣, 孙小涓, 胡玉新, 等. 基于流式计算的遥感卫星数据快视处理方法[J]. 计算机工程与应用, 2019, 55(10):77-82.
|
[8] |
刘欢, 陈能成, 陈泽强. 基于Apache Spark的MODIS海表温度反演方法[J]. 计算机系统应用, 2018, 27(9):112-117. http://www.c-s-a.org.cn/1003-3254/6534.html.
|
[9] |
Eldawy A, Mokbel M. SpatialHadoop: A MapReduce framework for spatial data[C]. International Confer-ence on Data Engineering. 2015(5):1352-1363.
|
[10] |
Aji A, Wang F, Vo H, et al. Hadoop-GIS: A High Per-formance Spatial Data Warehousing System over Map-Reduce[J]. Proceedings of the VLDB Endowment, 2013, 6(11):1009-1020.
doi: 10.14778/2536222.2536227
|
[11] |
Yu J, Wu J, Sarwat M. GeoSpark: a cluster computing framework for processing large-scale spatial data[C]. The 23rd SIGSPATIAL International Conference. ACM, 2015(11):1-4.
|
[12] |
Tang M, Yu Y, Malluhi Q M, et al. LocationSpark: A distributed in-memory data management system for big spatial data[J]. Proceedings of the VLDB Endowment, 2016, 9(13):1565-1568.
doi: 10.14778/3007263.3007310
|
[13] |
Xie D, Li F, Yao B, et al. Simba: spatial in-memory big data analysis[C]. The 24th ACM SIGSPATIAL International Conference. ACM, 2016(10):1-4.
|
[14] |
Wang L, Ma Y, Yan J, et al. PipsCloud: High performance cloud computing for remote sensing big data management and processing[J]. Future Generation Computer Systems, 2016(8):353-368.
|
[15] |
Wulder M A, White J C, Loveland T R, et al. The global Landsat archive: Status, consolidation, and direction[J]. Remote Sensing of Environment, 2016, 185:271-283.DOI: https://doi.org/10.1016/j.rse.2015.11.032.
doi: 10.1016/j.rse.2015.11.032
|
[16] |
Apache. GeoTrellis Document[EB/OL].[2020-08-28]. https://geotrellis.readthedocs.io/en/latest/.
|
[17] |
Wiener P.; Simko V.; Nimis J. Taming the Evolution of Big Data and its Technologies in BigGIS—AConceptual Architectural Framework for Spatio-Temporal Analytics at Scale[J]. In Proceedings of the 3rdInternational Confer-ence on Geographical Information Systems Theory, Appli-cations and Management(GISTAM 2017). SCITEPRESS, Porto, Portugal, 27-28 April 2017; pp. 90-101. DOI: 10.5220/0006334200900101.
|
[18] |
Apache. GeoTrellis-Landsat-Tutorial[EB/OL].[2020-08-28]. https://github.com/geotrellis/geotrellis-landsat-tutorial.
|
[19] |
张耀南, 艾鸣浩, 康建芳, 等. 地学大数据处理架构与关键技术研究[J]. 数据与计算发展前沿, 2020, 2(2):91-100.DOI: 10.11871/jfdc.issn.2096-742X.2020.02.007.PID:21.86101.2/jfdc.2096-742X.2020.02.007.
|
[20] |
Wyborn L, Evans B J K. Integrating ‘Big’geoscience data into the petascale national environmental research interoperability platform (NERDIP): Successes and unforeseen challenges[C]. 2015 IEEE International Conference on Big Data (Big Data). IEEE, 2015: 2005-2009. DOI: 10.1109/bigdata.2015.7363981.
|
[21] |
Meng Zhen, Wang Xuezhi, Xie Zhimin, et al. IA: An Inter-active Analysis Service Management Engine in Scien-tific Data Cloud[J]. Frontiers of Data & Computing, 2020, 2(2):31-39.DOI: 10.11871/jfdc.issn.2096-742X.2020.02.003.PID:21.86101.2/jfdc.2096-742X.2020.02.003.
|