数据与计算发展前沿 ›› 2025, Vol. 7 ›› Issue (2): 130-140.

CSTR: 32002.14.jfdc.CN10-1649/TP.2025.02.013

doi: 10.11871/jfdc.issn.2096-742X.2025.02.013

• 技术与应用 • 上一篇    下一篇

通过块打乱和旋转提升对视觉-语言模型的对抗迁移性

王文彬1(),高思远1,*(),高满达1,梁凌1,杨光俊1,何邦彦2,刘耀祖2   

  1. 1.国家能源集团新能源技术研究院有限公司,北京 102209
    2.中国科学院自动化研究所,北京 100190
  • 收稿日期:2024-12-09 出版日期:2025-04-20 发布日期:2025-04-23
  • 通讯作者: 高思远
  • 作者简介:王文彬,国家能源集团新能源技术研究院有限公司,基石运营技术研究中心主任,主要从事人工智能技术在能源行业的应用研究工作。
    本文承担工作为方法的提出和实现。
    WANG Wenbin, is the director of the Cornerstone Operation Technology Research Center, CHN Energy New Energy Technology Research Institute Co., Ltd. He is mainly engaged in research on the application of artificial intelligence technology in the energy industry.
    In this paper, he is mainly responsible for method proposal and method algorithm realization.
    E-mail: 16080112@ceic.com|高思远,国家能源集团新能源技术研究院有限公司,基石运营技术研究中心工程师,博士,主要研究方向为深度学习,模型安全等。
    本文承担工作为工作的整体协调与推进。
    GAO Siyuan, Ph.D., is an engineer at the Cornerstone Operation Technology Research Center, CHN Energy New Energy Technology Research Institute Co., Ltd. Her research interests include deep learning, model security, and related areas.
    In this paper, she is mainly responsible for overall coordination and advancement of work.
    E-mail: 20065237@ceic.com
  • 基金资助:
    国家能源集团科技创新项目“火电厂人工智能运营体系典型应用场景样本库模型库研究”(GJNY-23-99)

Improving Adversarial Transferability on Vision-Language Pre-Training Models via Block Shuffle and Rotation

WANG Wenbin1(),GAO Siyuan1,*(),GAO Manda1,LIANG Ling1,YANG Guangjun1,HE Bangyan2,LIU Yaozu2   

  1. 1. CHN Energy New Energy Technology Research Institute Co., Ltd, Beijing 102209, China
    2. Institute of Automation, Chinese Acadamy of Science, Beijing 100190, China
  • Received:2024-12-09 Online:2025-04-20 Published:2025-04-23
  • Contact: GAO Siyuan

摘要:

【目的】研究视觉-语言预训练VLP模型易受对抗样本攻击的问题,旨在提出一种能提高对抗样本迁移性的方法以应对相关安全风险。【文献范围】对现有相关研究进行了总结与分析。【应用背景】当前VLP模型易受对抗样本攻击,其带来重大安全风险,且黑盒迁移攻击相比白盒对抗攻击更能反映现实场景,更具研究意义。【方法】提出了基于块打乱和旋转的迁移攻击方法,在生成对抗图像和对抗文本时,加入基于块打乱和旋转操作,以此提升样本的多样性,从而提升对抗迁移性。【结果】在Flickr30K数据集上进行的实验,验证了所提方法的有效性。【局限】对抗迁移性仍有待进一步提升。【结论】所提出的基于块打乱和旋转的迁移攻击方法,能够有效提高对VLP模型的对抗迁移性。

关键词: 对抗样本, 对抗迁移性, 视觉-语言预训练模型

Abstract:

[Purpose] This study focuses on the vulnerability of Visual-Language Pretraining (VLP) models to adversarial examples. The aim is to propose a method to enhance the transferability of adversarial examples to address related security risks. [Literature Review] A summary and analysis of existing relevant studies have been conducted. [Application Background] Currently, VLP models are susceptible to adversarial examples, which pose significant security risks. Moreover, black-box transfer attacks are more reflective of real-world scenarios and thus worthy of more research compared to white-box adversarial attacks. [Methods] A transfer attack method based on block shuffle and rotation is proposed. When generating adversarial images and adversarial texts, operations based on block shuffle and rotation are added to increase the diversity of samples, thereby enhancing the adversarial transferability. [Results] Experiments on the Flickr30K dataset have verified the effectiveness of the proposed method. [Limitations] The adversarial transferability still needs to be further improved. [Conclusion] The proposed transfer attack method based on block shuffle and rotation can effectively improve the adversarial transferability of VLP models.

Key words: adversarial examples, adversarial transferability, vision-language pre-training model