| [1] |
ZHANG C, XU Q F, YU Y R, et al. A survey on potentials, pathways and challenges of large language models in new-generation intelligent manufacturing[J]. Robotics and Computer-Integrated Manufacturing, 2025(92): 102883.
|
| [2] |
HE W T, MA H J, LI S H, et al. Using Augmented Small Multimodal Models to Guide Large Language Models for Multimodal Relation Extraction[J]. Applied Sciences-Basel, 2023, 13(22): 12208.
|
| [3] |
谢雨希, 杨江平, 孙知建, 等. 雷达装备故障原因知识图谱构建研究[J]. 现代防御技术, 2022, 50(5): 114-121.
doi: 10.3969/j.issn.1009-086x.2022.05.015
|
| [4] |
胡伟涛. 装备知识图谱构建及分析研究[D]. 长沙: 国防科技大学, 2020: 1-51.
|
| [5] |
陈沁蕙. 面向电磁空间领域的实体关系联合抽取关键技术研究[D]. 上海: 华东师范大学, 2022: 1-60.
|
| [6] |
郝瑞哲. 雷达及关联装备情报知识图谱构建方法研究[D]. 长沙: 国防科技大学, 2017: 27-49.
|
| [7] |
黄振铭, 吴晓芳, 薛孟武. 雷达知识图谱构建方法及应用[J]. 空天预警研究学报, 2024, 38(3):178-183.
|
| [8] |
蔡子杰, 方荟, 刘建华, 等. 基于大型语言模型指令微调的心理健康领域联合信息抽取[J]. 中文信息学报, 2024, 38(8):112-127.
|
| [9] |
曾江峰, 高鹏钰, 李玲, 等. 基于BERT和提示学习的网络暴力言论识别研究[J/OL]. 情报杂志, 2025, 44(5):82-90.
|
| [10] |
CHEN X, ZHANG N Y, XIE X, et al. KnowPrompt: Knowledge-aware Prompt-tuning with Synergistic Optimization for Relation Extraction[C]//WWW '22: Proceedings of the ACM Web Conference 2022, Virtual Event, 2022: 2778-2788.
|
| [11] |
SCHICK T, SCHMID H, HINRICH S. Automatically Identifying Words that Can Serve as Labels for Few-shot Text Classification[C]// International Conference on Computational Linguistics, Barcelona, 2020: 5569- 5578.
|
| [12] |
LIU X, ZHENG Y A, DU Z X, et al. GPT understands, too[J]. arXiv preprint arXiv:210310385, 2021.
|
| [13] |
TIMO S, HINRICH S. Exploiting Cloze-Questions for Few-Shot Text Classification and Natural Language Inference[C]// Conference of the European Chapter of the Association for Computational Linguistics, Kiev: Association for Computational Linguistics, 2021: 255-269.
|
| [14] |
GAO T Y, FISCH A, CHEN D Q. Making Pre-Trained Language Models Better Few-shot Learners[C]// Proc of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing. Association for Computational Linguistics, 2021: 3816-3830.
|
| [15] |
HU S D, DING N, WANG H D, et al. Knowledgeable Prompt-tuning: Incorporating Knowledge into Prompt Verbalizer for Text Classification[C]//Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics. Dublin: Association for Computational Linguistics, 2022: 2225-2240.
|
| [16] |
XU B R, YIN J H, LIAN C, et al. Low-Rank Optimal Transport for Robust Domain Adaptation[J]. IEEE/CAA Journal of Automatica Sinica, 2024, 11(7): 1667-1680.
|
| [17] |
ZHENG Y W, ZHANG R C, ZHANG J H, et al. LlamaFactory: Unified Efficient Fine-Tuning of 100+ Language Models[C]// Proc of the 62nd Annual Meeting of the Association for Computational Linguistics, Bangkok, Association for Computational Linguistics, 2024(3): 400-410.
|
| [18] |
MARKUS E, ADRIAN U. Span-based Joint Entity and Relation Extraction with Transformer Pre-training[J]. Frontiers in Artificial Intelligence and Applications, 2021, 325: 2006-2013.
|
| [19] |
CUI L Y, ZHANG Y. Hierarchically-Refined Label Attention Network for Sequence Labeling[J]. arXiv preprint, arXiv:1908.08676, 2019.
|
| [20] |
Get started with doccano[EB/OL]. [2023-7-20]. https://doccano.github.io/doccano/.
|
| [21] |
PIERRE I, EUGENE C, LIN D K. Bleu: a Method for Automatic Evaluation of Machine Translation[C]// Proc of the 40th Annual Meeting of the Association for Computational Linguistics, Pennsylvania: Association for Computational Linguistics, 2002: 311-318.
|
| [22] |
CHIN-YEW L. ROUGE:A Package for Automatic Evaluation of Summaries[C]// Proc of the Workshop on Text Summarization Branches Out (WAS 2004), Barcelona: Association for Computational Linguistics 2004: 74-81.
|