[1] |
ZHANG T, LI L, ZHENG B. Estimation of agricultural soil properties with imaging and laboratory spectroscopy[J]. Journal of Applied Remote Sensing, 2013, 7(1): 1-25.
|
[2] |
FENG X, LI J, CHENG W, et al. Evaluation of AMSR-E retrieval by detecting soil moisture decrease following massive dryland re-vegetation in the Loess Plateau, China[J]. Remote Sensing of Environment, 2017, 196(1): 253-264.
doi: 10.1016/j.rse.2017.05.012
|
[3] |
XING M, HE B, NI X, et al. Retrieving surface soil moisture over wheat and soybean fields during growing season using modified water cloud model from Radarsat-2 SAR data[J]. Remote Sensing, 2019, 11(16): 1-22.
doi: 10.3390/rs11010001
|
[4] |
赵春江. 农业遥感研究与应用进展[J]. 农业机械学报, 2014, 45(12): 277-293.
|
[5] |
梁顺林, 白瑞, 陈晓娜, 等. 2019年中国陆表定量遥感发展综述[J]. 遥感学报, 2020, 24(6): 618-671.
|
[6] |
陈书林, 刘元波, 温作民. 卫星遥感反演土壤水分研究综述[J]. 地球科学进展, 2012, 11(1): 1192-1203.
|
[7] |
O'NEILL P, ENTEKHBABI D, NJOKU E, et al. The NASA Soil Moisture Active Passive (SMAP) mission: Overview[C]. IEEE International Geoscience and Remote Sensing Symposium, Honolulu, HI, USA, 2010, 2(8): 704-716.
|
[8] |
LIU J, ZHAN X, HAIN C, et al. NOAA Soil Moisture Operational Product System (SMOPS) and its validations[C]. IEEE International Geoscience and Remote Sensing Symposium, Beijng, China, 2016, 3(5): 3477-3480.
|
[9] |
DAS N, ENTEKHBABI D, DUNBAR R S, et al. The SMAP and Copernicus Sentinel 1A/B microwave active-passive high resolution surface soil moisture product[J]. Remote Sensing of Environment, 2019, 233(1): 1-17.
|
[10] |
DORIGO W, WAGNER W, ALBERGEL C, et al. ESA CCI Soil Moisture for improved Earth system understanding: State-of-the art and future directions[J]. Remote Sensing of Environment, 2017, 203(1): 185-215.
doi: 10.1016/j.rse.2017.07.001
|
[11] |
DORIGO W, WAGNER W, ALBERGEL C, et al. Evaluation of the ESA CCI soil moisture product using ground-based observations[J]. Remote Sensing of Environment, 2015, 162(2): 380-395.
doi: 10.1016/j.rse.2014.07.023
|
[12] |
LIU Y, YANG Y, YUE X. Evaluation of Satellite-Based Soil Moisture Products over Four Different Continental In-Situ Measurements[J]. Remote Sensing, 2018, 10(7): 1-27.
doi: 10.3390/rs10010001
|
[13] |
MCNALLY A, SHUKLA S, Arsenault K R, et al. Evaluating ESA CCI soil moisture in East Africa[J]. International Journal of Applied Earth Observation and Geoinformation, 2016, 48(1): 96-109.
doi: 10.1016/j.jag.2016.01.001
|
[14] |
YIN J, ZHAN X, LIU J. NOAA Satellite Soil Moisture Operational Product System (SMOPS) Version 3.0 Generates Higher Accuracy Blended Satellite Soil Moisture[J]. Remote Sensing, 2020, 12(17): 1-15.
doi: 10.3390/rs12010001
|
[15] |
WANG Y, LENG P, PENG J, et al. Global assessments of two blended microwave soil moisture products CCI and SMOPS with in-situ measurements and reanalysis data[J]. International Journal of Applied Earth Observation and Geoinformation, 2021, 94(1): 1-13.
|
[16] |
YIN J, ZHAN X, LIU J, et al. A New Method for Generating the SMOPS Blended Satellite Soil Moisture Data Product without Relying on a Model Climatology[J]. Remote Sensing, 2022, 14(7): 1-10.
doi: 10.3390/rs14010001
|
[17] |
COLLIANDER A, COSH M H, KELLY V R, et al. Validation of SMAP surface soil moisture products with core validation sites[J]. Remote Sensing of Environment, 2017, 191(1): 215-231.
doi: 10.1016/j.rse.2017.01.021
|
[18] |
MA H, ZENG J, CHEN N, et al. Satellite surface soil moisture from SMAP, SMOS, AMSR2 and ESA CCI: A comprehensive assessment using global ground-based observations[J]. Remote Sensing of Environment, 2019, 231(1): 1-14.
|
[19] |
REICHEL R H, DELANNOY J M, LIU Q, et al. Assessment of the SMAP Level-4 Surface and Root-Zone Soil Moisture Product Using In Situ Measurements[J]. Journal of Hydrometeorology, 2017, 18(10): 2621-2645.
doi: 10.1175/JHM-D-17-0063.1
|
[20] |
CHEN Y, FENG X, FU B. An improved global remote-sensing-based surface soil moisture (RSSSM) dataset covering 2003-2018[J]. Earth System Science Data, 2021, 13(1): 1-31.
doi: 10.5194/essd-13-1-2021
|
[21] |
YAO P, LU H, SHI J, et al. A long term global daily soil moisture dataset derived from AMSR-E and AMSR2 (2002-2019)[J]. Scientific data, 2021, 8(1): 1-16.
doi: 10.1038/s41597-020-00786-7
|
[22] |
MENG X, MAO K, MENG F, et al. A fine-resolution soil moisture dataset for China in 2002-2018[J]. Earth Syst. Sci. Data, 2021, 13(7): 3239-3261.
doi: 10.5194/essd-13-3239-2021
|
[23] |
SENANAYAKE I P, YEO I Y, TANGDANRONGSUB N, et al. An in-situ data based model to downscale radiometric satellite soil moisture products in the Upper Hunter Region of NSW, Australia[J]. Journal of Hydrology, 2019, 572(1): 820-838.
doi: 10.1016/j.jhydrol.2019.03.014
|
[24] |
ABOWARDA A S, BAI L, ZHANG C, et al. Generating surface soil moisture at 30 m spatial resolution using both data fusion and machine learning toward better water resources management at the field scale[J]. Remote Sensing of Environment, 2021, 255(1): 1-19.
|
[25] |
LAN X, GUO Z, TIAN Y, et al. Review in soil moisture remote sensing estimation based on data assimilation[J]. Advances in Earth Science, 2015, 30(6): 668-679.
doi: 10.11867/j.issn.1001-8166.2015.06.0668
|
[26] |
CLEWLEY D, WHITCOMB J B, AKBAR R, et al. A method for upscaling in situ soil moisture measurements to satellite footprint scale using random forests[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(6): 2663-2673.
doi: 10.1109/JSTARS.4609443
|
[27] |
ZHAO W, SANCHEZ N, LU H, et al. A spatial downscaling approach for the SMAP passive surface soil moisture product using random forest regression[J]. Journal of Hydrology, 2018, 563(1): 1009-1024.
doi: 10.1016/j.jhydrol.2018.06.081
|
[28] |
PENG J, LOEW A, MERLIN O, et al. A review of spatial downscaling of satellite remotely sensed soil moisture[J]. Reviews of Geophysics, 2017, 55(2): 341-366.
doi: 10.1002/rog.v55.2
|
[29] |
LI Z, LENG P, ZHOU C, et al. Soil moisture retrieval from remote sensing measurements: Current knowledge and directions for the future[J]. Earth-Science Reviews, 2021, 218(9): 1-24.
|