[1] |
O'Connor M, Herlocker J. Clustering items for collabora-tive filtering[C]//Proceedings of the ACM SIGIR workshop on recommender systems. UC Berkeley, 1999,128:1-4
|
[2] |
Xu B, Bu J, Chen C, et al. An exploration of improving collaborative recommender systems via user-item sub-groups[C]//Proceedings of the 21st international conference on World Wide Web. 2012: 21-30.
|
[3] |
Lee J, Bengio S, Kim S, et al. Local collaborative ran-king[C]//Proceedings of the 23rd international conference on World wide web. 2014: 85-96.
|
[4] |
Christakopoulou E, Karypis G. Local item-item models for top-n recommendation[C]//Proceedings of the 10th ACM Conference on Recommender Systems. 2016: 67-74.
|
[5] |
Blei D M, Ng A Y, Jordan M I. Latent dirichlet alloca-tion[J]. the Journal of machine Learning research, 2003,3:993-1022.
|
[6] |
Ning X, Karypis G. Slim: Sparse linear methods for top-n recommender systems[C]//2011 IEEE 11th International Conference on Data Mining. IEEE, 2011: 497-506.
|
[7] |
Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions[J]. IEEE transactions on knowledge and data engineering, 2005,17(6):734-749.
doi: 10.1109/TKDE.2005.99
|
[8] |
Ricci F, Rokach L, Shapira B. Introduction to recom-mender systems handbook[M]//Recommender systems handbook. Springer, Boston, MA, 2011: 1-35.
|
[9] |
Deshpande M, Karypis G. Item-based top-n recom-mendation algorithms[J]. ACM Transactions on Infor-mation Systems (TOIS), 2004,22(1):143-177.
|
[10] |
Webb B. Netflix update: Try this at home[J]. Blog post sifter. org/simon/journal/20061211. html, 2006.
|
[11] |
Koren Y, Bell R, Volinsky C. Matrix factorization techniques for recommender systems[J]. Computer, 2009,42(8):30-37.
|
[12] |
Koren Y. Factorization meets the neighborhood: a multi-faceted collaborative filtering model[C]//Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining. 2008: 426-434.
|
[13] |
Koren Y. Collaborative filtering with temporal dynamics[C]//Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining. 2009: 447-456.
|
[14] |
Hu Y, Koren Y, Volinsky C. Collaborative filtering for implicit feedback datasets[C]//2008 Eighth IEEE Interna-tional Conference on Data Mining. Ieee, 2008: 263-272.
|
[15] |
Lee J, Kim S, Lebanon G, et al. Local low-rank matrix approximation[C]//International conference on machine learning. PMLR, 2013: 82-90.
|
[16] |
Burke R. Collaborative filtering with temporal dynamics. User Modeling and User-Adapted Interaction 2002,12:331-370.
|
[17] |
Burke R. Hybrid web recommender systems[J]. The adaptive web, 2007: 377-408.
|
[18] |
Kouki P, Fakhraei S, Foulds J, et al. Hyper: A flexible and extensible probabilistic framework for hybrid recom-mender systems[C]//Proceedings of the 9th ACM Con-ference on Recommender Systems. 2015: 99-106.
|
[19] |
Strub F, Gaudel R, Mary J. Hybrid recommender system based on autoencoders[C]//Proceedings of the 1st workshop on deep learning for recommender systems. 2016: 11-16.
|
[20] |
Hussein T.; Linder T.; Gaulke W.; Ziegler J. Hybreed: A software framework for developing context-aware hybrid recommender systems. User Modeling and User-Adapted Interaction 2014,24:121-174.
|
[21] |
Kim D.; Park C.; Oh J.; Yu H. Deep hybrid recom-mender systems via exploiting document context and statistics of items[J]. Information Sciences 2017,417:72-87.
doi: 10.1016/j.ins.2017.06.026
|
[22] |
Cantador I.; Castells P.; Bellogín A. An enhanced semantic layer for hybrid recommender systems: Appli-cation to news recommendation[J]. International Journal on Semantic Web and Information Systems 2011,7:44-78.
doi: 10.4018/IJSWIS
|
[23] |
Teo C H, Nassif H, Hill D, et al. Adaptive, personalized diversity for visual discovery[C]//Proceedings of the 10th ACM conference on recommender systems. 2016: 35-38.
|
[24] |
He C, Parra D, Verbert K. Interactive recommender systems: A survey of the state of the art and future research cha-llenges and opportunities[J]. Expert Systems with Appli-cations, 2016,56:9-27.
|
[25] |
O'Donovan J, Smyth B, Gretarsson B, et al. PeerChooser: visual interactive recommendation[C]//Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. 2008: 1085-1088.
|
[26] |
Gretarsson B, O'Donovan J, Bostandjiev S, et al. Small-worlds: visualizing social recommendations[C]//Computer graphics forum. Oxford, UK: Blackwell Publishing Ltd, 2010,29(3):833-842.
|
[27] |
Parra D, Brusilovsky P, Trattner C. See what you want to see: visual user-driven approach for hybrid recommen-dation[C]//Proceedings of the 19th international confer-ence on Intelligent User Interfaces. 2014: 235-240.
|
[28] |
Vig J, Sen S, Riedl J. Tagsplanations: explaining recom-mendations using tags[C]//Proceedings of the 14th inter-national conference on Intelligent user interfaces. 2009: 47-56.
|
[29] |
Verbert K.; Parra D.; Brusilovsky P.; Duval E. Visua-lizing recommendations to support exploration, trans-parency and controllability[C]// Proceedings of the 2013 international conference on Intelligent user interfaces, Santa Monica, California, USA, March 2013; ACM: New York, NY, USA, 2013: 351-362.
|
[30] |
Symeonidis P, Nanopoulos A, Manolopoulos Y. Movi-Explain: a recommender system with explanations[C]//Proceedings of the third ACM conference on Recom-mender systems. 2009: 317-320.
|
[31] |
Saito Y, Itoh T. MusiCube: a visual music recommen-dation system featuring interactive evolutionary compu-ting[C]//Proceedings of the 2011 Visual Information Com-munication-International Symposium. 2011: 1-6.
|
[32] |
Bostandjiev S, O'Donovan J, Höllerer T. TasteWeights: a visual interactive hybrid recommender system[C]//Proceedings of the sixth ACM conference on Recommender systems. 2012: 35-42.
|
[33] |
Bruns S, Valdez A C, Greven C, et al. What should i read next? a personalized visual publication recommender system[C]//International Conference on Human Interface and the Management of Information. Springer, Cham, 2015: 89-100.
|
[34] |
Wegba K, Lu A, Li Y, et al. Interactive movie recom-mendation through latent semantic analysis and story-telling[J]. arXiv preprint arXiv:1701.00199, 2017.
|
[35] |
汤颖, 孙康高, 秦绪佳, 等. 基于局部模型加权融合的Top-N电影推荐算法[J]. 计算机科学, 2018,45(S2):449-454.
|