| [1] | O'Connor M, Herlocker J. Clustering items for collabora-tive filtering[C]//Proceedings of the ACM SIGIR workshop on recommender systems. UC Berkeley, 1999,128:1-4 | 
																													
																							| [2] | Xu B, Bu J, Chen C, et al. An exploration of improving collaborative recommender systems via user-item sub-groups[C]//Proceedings of the 21st international conference on World Wide Web. 2012: 21-30. | 
																													
																							| [3] | Lee J, Bengio S, Kim S, et al. Local collaborative ran-king[C]//Proceedings of the 23rd international conference on World wide web. 2014: 85-96. | 
																													
																							| [4] | Christakopoulou E, Karypis G. Local item-item models for top-n recommendation[C]//Proceedings of the 10th ACM Conference on Recommender Systems. 2016: 67-74. | 
																													
																							| [5] | Blei D M, Ng A Y, Jordan M I. Latent dirichlet alloca-tion[J]. the Journal of machine Learning research, 2003,3:993-1022. | 
																													
																							| [6] | Ning X, Karypis G. Slim: Sparse linear methods for top-n recommender systems[C]//2011 IEEE 11th International Conference on Data Mining. IEEE, 2011: 497-506. | 
																													
																							| [7] | Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions[J]. IEEE transactions on knowledge and data engineering, 2005,17(6):734-749. doi: 10.1109/TKDE.2005.99
 | 
																													
																							| [8] | Ricci F, Rokach L, Shapira B. Introduction to recom-mender systems handbook[M]//Recommender systems handbook. Springer, Boston, MA, 2011: 1-35. | 
																													
																							| [9] | Deshpande M, Karypis G. Item-based top-n recom-mendation algorithms[J]. ACM Transactions on Infor-mation Systems (TOIS), 2004,22(1):143-177. | 
																													
																							| [10] | Webb B. Netflix update: Try this at home[J]. Blog post sifter. org/simon/journal/20061211. html, 2006. | 
																													
																							| [11] | Koren Y, Bell R, Volinsky C. Matrix factorization techniques for recommender systems[J]. Computer, 2009,42(8):30-37. | 
																													
																							| [12] | Koren Y. Factorization meets the neighborhood: a multi-faceted collaborative filtering model[C]//Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining. 2008: 426-434. | 
																													
																							| [13] | Koren Y. Collaborative filtering with temporal dynamics[C]//Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining. 2009: 447-456. | 
																													
																							| [14] | Hu Y, Koren Y, Volinsky C. Collaborative filtering for implicit feedback datasets[C]//2008 Eighth IEEE Interna-tional Conference on Data Mining. Ieee, 2008: 263-272. | 
																													
																							| [15] | Lee J, Kim S, Lebanon G, et al. Local low-rank matrix approximation[C]//International conference on machine learning. PMLR, 2013: 82-90. | 
																													
																							| [16] | Burke R. Collaborative filtering with temporal dynamics. User Modeling and User-Adapted Interaction 2002,12:331-370. | 
																													
																							| [17] | Burke R. Hybrid web recommender systems[J]. The adaptive web, 2007: 377-408. | 
																													
																							| [18] | Kouki P, Fakhraei S, Foulds J, et al. Hyper: A flexible and extensible probabilistic framework for hybrid recom-mender systems[C]//Proceedings of the 9th ACM Con-ference on Recommender Systems. 2015: 99-106. | 
																													
																							| [19] | Strub F, Gaudel R, Mary J. Hybrid recommender system based on autoencoders[C]//Proceedings of the 1st workshop on deep learning for recommender systems. 2016: 11-16. | 
																													
																							| [20] | Hussein T.; Linder T.; Gaulke W.; Ziegler J. Hybreed: A software framework for developing context-aware hybrid recommender systems. User Modeling and User-Adapted Interaction 2014,24:121-174. | 
																													
																							| [21] | Kim D.; Park C.; Oh J.; Yu H. Deep hybrid recom-mender systems via exploiting document context and statistics of items[J]. Information Sciences 2017,417:72-87. doi: 10.1016/j.ins.2017.06.026
 | 
																													
																							| [22] | Cantador I.; Castells P.; Bellogín A. An enhanced semantic layer for hybrid recommender systems: Appli-cation to news recommendation[J]. International Journal on Semantic Web and Information Systems 2011,7:44-78. doi: 10.4018/IJSWIS
 | 
																													
																							| [23] | Teo C H, Nassif H, Hill D, et al. Adaptive, personalized diversity for visual discovery[C]//Proceedings of the 10th ACM conference on recommender systems. 2016: 35-38. | 
																													
																							| [24] | He C, Parra D, Verbert K. Interactive recommender systems: A survey of the state of the art and future research cha-llenges and opportunities[J]. Expert Systems with Appli-cations, 2016,56:9-27. | 
																													
																							| [25] | O'Donovan J, Smyth B, Gretarsson B, et al. PeerChooser: visual interactive recommendation[C]//Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. 2008: 1085-1088. | 
																													
																							| [26] | Gretarsson B, O'Donovan J, Bostandjiev S, et al. Small-worlds: visualizing social recommendations[C]//Computer graphics forum. Oxford, UK: Blackwell Publishing Ltd, 2010,29(3):833-842. | 
																													
																							| [27] | Parra D, Brusilovsky P, Trattner C. See what you want to see: visual user-driven approach for hybrid recommen-dation[C]//Proceedings of the 19th international confer-ence on Intelligent User Interfaces. 2014: 235-240. | 
																													
																							| [28] | Vig J, Sen S, Riedl J. Tagsplanations: explaining recom-mendations using tags[C]//Proceedings of the 14th inter-national conference on Intelligent user interfaces. 2009: 47-56. | 
																													
																							| [29] | Verbert K.; Parra D.; Brusilovsky P.; Duval E. Visua-lizing recommendations to support exploration, trans-parency and controllability[C]// Proceedings of the 2013 international conference on Intelligent user interfaces, Santa Monica, California, USA, March 2013; ACM: New York, NY, USA, 2013: 351-362. | 
																													
																							| [30] | Symeonidis P, Nanopoulos A, Manolopoulos Y. Movi-Explain: a recommender system with explanations[C]//Proceedings of the third ACM conference on Recom-mender systems. 2009: 317-320. | 
																													
																							| [31] | Saito Y, Itoh T. MusiCube: a visual music recommen-dation system featuring interactive evolutionary compu-ting[C]//Proceedings of the 2011 Visual Information Com-munication-International Symposium. 2011: 1-6. | 
																													
																							| [32] | Bostandjiev S, O'Donovan J, Höllerer T. TasteWeights: a visual interactive hybrid recommender system[C]//Proceedings of the sixth ACM conference on Recommender systems. 2012: 35-42. | 
																													
																							| [33] | Bruns S, Valdez A C, Greven C, et al. What should i read next? a personalized visual publication recommender system[C]//International Conference on Human Interface and the Management of Information. Springer, Cham, 2015: 89-100. | 
																													
																							| [34] | Wegba K, Lu A, Li Y, et al. Interactive movie recom-mendation through latent semantic analysis and story-telling[J]. arXiv preprint arXiv:1701.00199, 2017. | 
																													
																							| [35] | 汤颖, 孙康高, 秦绪佳, 等. 基于局部模型加权融合的Top-N电影推荐算法[J]. 计算机科学, 2018,45(S2):449-454. |