[1] |
国务院公报, 2007年第30号[EB/OL]. [2025-02-01]. https://www.gov.cn/gongbao/content/2007/content_778188.htm.
|
[2] |
ITER Organization[EB/OL]. FR:ITER Project Home,[2025-02-01]. http://www.iter.org.
|
[3] |
李建刚. 我国超导托卡马克的现状及发展[J]. 中国科学院院刊, 2007, 23(5): 404-410.
|
[4] |
万宝年, 徐国盛. EAST超导托卡马克[J]. 科学通报, 2015, 60(23): 2157-2168.
|
[5] |
SCHISSEL D P, COVIELLO E, EIDIETIS N, et al. Remote third shift EAST operation: a new paradigm[J]. Nuclear Fusion, 2017, 57(5): 056032.
|
[6] |
马宗萼, 谭海波, 李晓风. 基于XTP的ITER广域网链路优化方案研究[J]. 计算机工程与设计, 2012, 33(1) : 17-21.
|
[7] |
High-Speed-File-Transfer-Protocol-Aspera-FASP 2025[EB/OL]. [2025-02-01]. https://sudonull.com/post/91861-High-Speed-File-Transfer-Protocol-Aspera-FASP-IBM-Blog.
|
[8] |
MARRU S, et al. Blaze: A High-Performance, Scalable, and Efficient Data Transfer Framework with Configurable and Extensible Features: Principles, Implementation, and Evaluation of a Transatlantic Inter-Cloud Data Transfer Case Study[C]. 2023 IEEE 16th International Conference on Cloud Computing (CL-OUD), Chicago, IL, USA, 2023: 58-68.
|
[9] |
ESNET Organization[EB/OL]. FastData:Home, [2025-02-01]. https://fasterdata.es.net/host-tuning/.
|
[10] |
MATHIS M, SEMKE J, MAHDAVI J, et al. The macr-oscopic behavior of the TCP congestion avoidance algorithm[J]. ACM SIGCOMM Computer Communication Review, 1997, 27(3): 67-82.
|
[11] |
HENDERSON T, FLOYD S, GURTOV A, et al. The NewReno Modification to TCP’s Fast Recovery Algorithm. Internet Requests for Comments[EB/OL]. RFC Editor, RFC 6582, April 2012. https://www.rfc-editor.org/rfc/rfc6582.txt.
|
[12] |
HAS, RHEE I, XU L. CUBIC: A New TCP-Friendly High-Speed TCP Variant[J]. ACM SIGOPS Operating Systems Review, 2008, 42(5): 64-74.
|
[13] |
BRAKMO L S, O’MALLEY S W, PETERSON L L. TCP Vegas: New Techniques for Congestion Detection and Avoidance[C]. in Proceedings of the Conference on Communications Architectures, Protocols and Applications, ser. SIGCOMM’94 New York, NY, USA: Association for Computing Machinery, 1994: 24-35.
|
[14] |
WEI D X, JIN C, LOW S H, et al. FAST TCP: Motivation, Architecture, Algorithms, Performance[J]. IEEE/ACM Transactions on Networking, 2006, 14(6): 1246-1259.
|
[15] |
CARDWELL N, CHENG Y, GUNN C S, et al. BBR: Congestion-based congestion control: Measuring bottleneck bandwidth and round-trip propagation time[J]. Queue, 2016, 14(5): 20-53.
|
[16] |
PAN W, LI X, TAN H, et al. Improvement of RTT fairness problem in BBR congestion control algorithm by gamma correction[J]. Sensors, 2021, 21(12): 4128.
|
[17] |
XU J, PAN W, TAN H, et al. A Modified TCP BBR to Enable High Fairness in High-Speed Wireless Networks[J]. Future Internet, 2024, 16(11): 392.
|
[18] |
TIERNEY B, DART E, KISSEL E, et al. Exploring the BBRv2 Congestion Control Algorithm for use on Data Transfer Nodes[C]. 2021 IEEE Workshop on Innovating the Network for Data-Intensive Science (INDIS), 2021: 23-33.
|
[19] |
IBM Documentations[EB/OL]. Aspera, [2025-02-01]. https://www.ibm.com/cn-zh/products/aspera/sync.
|
[20] |
张亚生, 彭华, 谷聚娟. 卫星TCP加速技术研究[J]. 无线电通信技术, 2010, 36(5): 29-31.
|
[21] |
Riverbed Documentations[EB/OL]. [2025-02-01]. https://support.riverbed.com/bin/support/static/fbunsuuo632vi3jrspe0evbko9/html/u2pi6l52l4drmhq3uhck9tu7hm/sh_9.2_dg_html/index.html#page/sh_9.2_dg%2Fn-et-work_trans.html.
|