深度学习在医学影像分析中的应用综述
|
俞益洲,马杰超,石德君,周振
|
Application of Deep Learning in Medical Imaging Analysis: A Survey
|
Yu Yizhou,Ma Jiechao,Shi Dejun,Zhou Zhen
|
|
表1 在多种医学影像分析中DL与传统方法和人类的表现对比
|
Table 1 The performance comparison of DL models with traditional methods and humans on multiple applications in medical imaging
|
|
任务和评价指标 | 数据模态 | DL | 人工特征方法 | 人类/专家 | DL+人类 | 数据集 | 脑肿瘤分割/Dice | 核磁 | 88.0%[91] | 79.0%[92] | - | - | 2013 BRATS | 转移乳腺癌检测/准确度[93] | 病理切片 | 92.5% | - | 96.60% | 99.50% | Camelyon16 | 视网膜血管分割/准确度 | 眼底图片 | 96.0%~97.3%[40] | 92.7~94.5% | 94.70%[43] | - | DRIVE/STARE | 糖网筛查/AUC | 眼底图片 | 99.0%[94] | 87.8%[95] | - | - | Kaggle’s dataset | 肺结节筛查/敏感度 | CT | 95.00%[52] | 63.20%[48] | - | - | LUNA16 | 肝分割/体积重叠误差[89] | CT | 5.37% | 7.73% | - | - | SLIVER07 | 皮肤癌分类/准确度[13] | 皮肤图片 | 72.10% | - | 66.00% | - | Public+Private | 乳腺良恶识别/敏感性[74] | DBT* | 93.00% | 85.20% | - | - | Private | 肝肿瘤分割/Dice[96] | CT | 80.1% | 75.67%~79.78% | - | - | Private | 肠息肉筛查/检出率[90] | 结肠镜 | 96.40% | - | 7%~53% | - | Private | *DBT:数字乳腺断层合成显像 |
|
|
|