Frontiers of Data and Computing ›› 2025, Vol. 7 ›› Issue (3): 67-80.
CSTR: 32002.14.jfdc.CN10-1649/TP.2025.03.006
doi: 10.11871/jfdc.issn.2096-742X.2025.03.006
• Special Issue: 30th Anniversary of the Computer Network Information Center, Chinese Academy of Sciences • Previous Articles Next Articles
FENG Zhichen(),LI Jialin,GAO Yaqian,TIAN Shaobo,YE Huang,ZHANG Jian*(
)
Received:
2025-05-14
Online:
2025-06-20
Published:
2025-06-25
FENG Zhichen, LI Jialin, GAO Yaqian, TIAN Shaobo, YE Huang, ZHANG Jian. Enabling In-situ Feature Extraction in Extreme Scale Phase Field Simulations[J]. Frontiers of Data and Computing, 2025, 7(3): 67-80, https://cstr.cn/32002.14.jfdc.CN10-1649/TP.2025.03.006.
Fig.1
Simulation of the phase transformation process in titanium alloy. α phase grains precipitate and grow on the background of β phase grains. This is a snapshot of the 20483 section in the computational domain. The box in the figure depicts the position, shape, and orientation characteristics of the extracted α phase grains."
Fig.4
A snapshot of the phase transformation process in titanium alloy. Background: β The grain boundaries between β grains are indicated in dark red. Boxes depict the position, size, and orientation characteristics of extracted grains. Left: β → α phase transformation. α grains in the 20483 block of the computational grid. Schematic structure of rNet3D. Right: β → ω phase transformation. ω grains in the 10243 block of the computational grid."
[1] | CHEN LQ. Phase-field models for microstructure evolution[J]. Annual Review of Materials Research, 2002, 32: 113-140. |
[2] | STEINBACH I. Phase-field models in materials science[J]. Modelling and Simulation in Materials Science and Engineering, 2009, 17: 073001. |
[3] | SHIMOKAWABE T, AOKI T, TAKAKI T, et al. Peta-scale phase-field simulation for dendritic solidification on the tsubame 2.0 supercomputer[C]// Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis (SC’11), 2011:Article No. 3. |
[4] | TAKAKI T, SHIMOKAWABE T, OHNO M, et al. Unexpected selection of growing dendrites by very-large-scale phase-field simulation[J]. Journal of Crystal Growth, 2013, 382: 21-25. |
[5] | TAKAKI T, SAKANE S, OHNO M, et al. Primary arm array during directional solidification of a single-crystal[J]. Acta Materialia, 2016, 118: 230-243. |
[6] | BAUER M, HÖTZER J, JAINTA M, et al. Massively parallel phase-field simulations for ternary eutectic directional solidification[C]// Proceedings of 2015 International Conference for High Performance Computing, Networking, Storage and Analysis (SC’15), 2015:1-12. |
[7] | BAUER M, et al. Code generation for massively parallel phase-field simulations[C]// Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, 2019: 1-32. |
[8] | ZHANG J, ZHOU C, WANG Y, et al. Extreme-scale phase field simulations of coarsening dynamics on the sunway taihulight supercomputer[C]// Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, 2016: 34-45. |
[9] | CAHN J, HILLARD J. Free energy of a nonuniform system interfacial free energy[J]. Journal of Chemical Physics, 1958, 28: 258-267. |
[10] | ZHOU X, WANG D. Objects as points[EB/OL]. (2019-04-07)[2024-06-04]. https://arxiv.org/abs/1904.07850. |
[11] | SIMONELLI A, BULO S R, PORZI L, et al. Disentangling monocular 3d object detection[C]// Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 1991-1999. |
[12] | ROWLINSON JS. Translation of J D van der Waals, The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density[J]. Journal of Statistical Physics, 1979, 20: 197-200. |
[13] | CAHN J, HILLARD J. Free energy of a nonuniform system interfacial free energy[J]. Journal of Chemical Physics, 1958, 28: 258-267. |
[14] | LANDAU LD, KHALATIKOW IM. The Selected Works of L.D. Landau[M]. Engl. transl. Oxford: Pergamon, 1963. |
[15] | CAHN J, HILLARD J. Free energy of a nonuniform system interfacial free energy[J]. Journal of Chemical Physics, 1958, 28: 258-267. |
[16] | ALLEN SM, CAHN JW. Coherent and incoherent equilibria in iron-rich iron-aluminum alloys[J]. Acta Metallurgica, 1975, 23(9): 1017-1026. |
[17] | FIX GJ. In Free Boundary Problems: Theory and Applications[M]. ed. A. FASANO, M. PRIMICERIO, Boston: Piman, 1983: 580. |
[18] | KOBAYASHI R, WARREN JA, CARTER WC. A continuum model of grain boundaries[J]. Physica D: Nonlinear Phenomena, 2000, 140(1-2): 141-150. |
[19] | WANG YU, JIN YM, CUITINO AM, et al. Phase field microelasticity theory and modeling of multiple dislocation dynamics[J]. Applied Physics Letters, 2001, 78(16): 2324-2326. |
[20] | MAHADEVAN M, BRADLEY RM. Phase field model of surface electromigration in single crystal metal thin films[J]. Physica D: Nonlinear Phenomena, 1999, 126(3-4): 201-213. |
[21] | BHATE DN, KUMAR A, BOWER AF. Diffuse interface model for electromigration and stress voiding[J]. Journal of Applied Physics, 2000, 87(4): 1712-1721. |
[22] | LU W, SUO Z. Dynamics of nanoscale pattern formation of an epitaxial monolayer[J]. Journal of the Mechanics and Physics of Solids, 2001, 49(9): 1937-1950. |
[23] | LANGER JS. Lectures on the theory of pattern formation[C]// Chance and Matter, Les Houches, session XLVI (Amsterdam, The Netherlands). ed. J SOULETIE et al, 1986: 692-711. |
[24] | HÖTZER J. Massiv-parallele und groskalige phasenfeldsimulationen zur untersuchung der mikrostrukturentwicklung[D/OL]. 2017. https://publikationen.bibliothek.kit.edu/1000069984. |
[25] | ZHOU Y, TUZEL O. Voxelnet: End-to-end learning for point cloud based 3d object detection[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018:4490-4499. |
[26] | YAN Y, MAO YX, LI B. Second: Sparsely embedded convolutional detection[J/OL]. Sensors, 2018, 18(10): 3337, https://www.mdpi.com/1424-8220/18/10/3337. |
[27] | DENG JJ, et al. Voxel r-cnn: Towards high performance voxel-based 3d object detection[C]// Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(2): 1201-1209. |
[28] | QI CR, et al. Pointnet: Deep learning on point sets for 3d classification and segmentation[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 652-660. |
[29] | YANG ZT, et al. 3dssd: Point-based 3d single stage object detector[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 11040-11048. |
[30] | SHI SS, WANG XG, LI HS. Pointrcnn: 3d object proposal generation and detection from point cloud[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 770-779. |
[31] | SHI S, GUO C, JIANG L, et al. Pv-rcnn: Point-voxel feature set abstraction for 3d object detection[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 10529-10538. |
[32] | HE CH, et al. Structure aware single-stage 3d object detection from point cloud[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 11873-11882. |
[33] | JIA Y, SHELHAMER E, DONAHUE J, et al. Caffe: Convolutional architecture for fast feature embedding[C]// Proceedings of the 22nd ACM International Conference on Multimedia, 2014: 675-678. |
[34] | CHELLAPILLA K, PURI S, SIMARD P. High performance convolutional neural networks for document processing[C/OL]// Tenth International Workshop on Frontiers in Handwriting Recognition. Suvisoft, 2006. https://inria.hal.science/inria-00112631/. |
[35] | FANG J, FU H, ZHAO W, et al. Swdnn: A library for accelerating deep learning applications on sunway taihulight[C]// 2017 IEEE International Parallel and Distributed Processing Symposium (IPDPS), IEEE, 2017: 615-624. |
[36] | MATHIEU M, HENAFF M, LECUN Y. Fast training of convolutional networks through ffts[EB/OL]. (2013-12-19)[2024-06-04]. https://arxiv.org/abs/1312.5851. |
[37] | VASILACHE N, JOHNSON J, MATHIEU M, et al. Fast convolutional nets with fbfft: A gpu performance evaluation[EB/OL]. (2014-12-23)[2024-06-04]. https://arxiv.org/abs/1412.7580. |
[38] | JIA Z, ZLATESKI A, DURAND F, et al. Optimizing n-dimensional, winograd-based convolution for manycore cpus[C]// Proceedings of the 23rd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, 2018: 109-123. |
[39] | LIU J, YANG D, LAI J. Optimizing winograd-based convolution with tensor cores[C]// Proceedings of the 50th International Conference on Parallel Processing, 2021: 1-10. |
[40] | LI L, FANG J, FU H, et al. Swcaffe: A parallel framework for accelerating deep learning applications on sunway taihulight[C]// 2018 IEEE International Conference on Cluster Computing (CLUSTER), IEEE, 2018: 413-422. |
[41] | LIN H, LIN Z, DIAZ JM, et al. Swflow: A dataflow deep learning framework on sunway taihulight supercomputer[C]// 2019 IEEE 21st International Conference on High Performance Computing and Communications; IEEE 17th International Conference on Smart City; IEEE 5th International Conference on Data Science and Systems (HPCC/SmartCity/DSS). IEEE, 2019: 2467-2475. |
[42] | ZHANG Y, SHU B, YIN Y, et al. Efficient processing of convolutional neural networks on sw26010[C]// IFIP International Conference on Network and Parallel Computing, Springer, 2019: 316-321. |
[43] | WU Z. Mg3mconv: Multi-grained matrix-multiplication-mapping convolution algorithm toward the sw 26010 processor[EB/OL]. (2023-07-05)[2024-06-04]. https://arxiv.org/abs/2307.04941. |
[44] | CHEN J, et al. Projective manifold gradient layer for deep rotation regression[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 6646-6655. |
[45] | CHEN J, YIN Y, BIRDAL T, et al. Projective manifold gradient layer for deep rotation regression[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 6646-6655. |
[46] | ZHOU Y, BARNES C, LU J, et al. On the continuity of rotation representations in neural networks[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 5745-5753. |
[47] | LEVINSON J, ESTEVES C, CHEN K, et al. An analysis of svd for deep rotation estimation[J]. Advances in Neural Information Processing Systems, 2020, 33: 22554-22565. |
[48] | CHEN J, YIN Y, BIRDAL T, et al. Projective manifold gradient layer for deep rotation regression[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 6646-6655. |
[49] | DENG J, SHI S, LI P, et al. Voxel r-cnn: Towards high performance voxel-based 3d object detection[C]// Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(2): 1201-1209. |
[50] | ZHOU Q, YU C. Point RCNN: An angle-free framework for rotated object detection[J/OL]. Remote Sensing, 2022, 14(11): 2605. https://arxiv.org/abs/2205.14328. |
[51] | SHI FR, WANG Y. Variant selection during a precipitation in TiC6AlC4V under the influence of local stress C A simulation study[J]. Acta Materialia, 2013, 61: 6006-6024. |
[52] | JIANG L, YANG C, AO Y, et al. Towards highly efficient DGEMM on the emerging SW 26010 many-core processor[C]// 46th International Conference on Parallel Processing (ICPP), IEEE, 2017: 422-431. |
[53] | SUN F, PRIMA F, GLORIANT T. High-strength nanostructured TiC12Mo alloy from ductile metastable beta state precursor[J]. Materials Science and Engineering A, 2010, 527: 4262-4269. |
[54] | ZHENG Y, et al. Role of phase in the formation of extremely refined intragranular precipitates in metastable-titanium alloys[J]. Acta Materialia, 2016, 103: 850-858. |
[55] | LI T, CAIRNEY JM, KENT D, et al. The Mechanism of omega-assisted alpha phase formation in near beta-Ti alloys[J]. Scripta Materialia, 2015, 104: 75-78. |
[56] | NAG S, BANERJEE R, SRINIVASAN R, et al. Omega assisted nucleation and growth of alpha precipitates in the Ti-5AlC5MoC5VC3CrC0.5Fe beta titanium alloy[J]. Acta Materialia, 2009, 57: 2136-2147. |
[1] | Wang Shanshan,Zhang Jian. Exponential Time Difference Method for Anisotropic Phase Field Model with Elastic Strain Energy [J]. Frontiers of Data and Computing, 2020, 2(3): 113-125. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||